Please wait a minute...
img img
地球科学进展  2013, Vol. 28 Issue (10): 1144-1153    DOI: 10.11867/j.issn.1001-8166.2013.10.1144
王林1, 2, 陈文1
1.中国科学院大气物理研究所季风系统研究中心, 北京, 100190; 2.中国科学院大学, 北京, 100049
Application of Bias Correction and Spatial Disaggregation in Removing Model Biases and Downscaling over China
Wang Lin1, 2, Chen Wen1
1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100190; 2. University of Chinese Academy of Sciences, Beijing, 100049
 全文: PDF(715 KB)   HTML

目前全球气候模式在区域尺度上存在较大的模拟系统偏差和空间分辨率低的缺陷, 误差订正空间分解法(BCSD)可以有效去除其系统误差, 并能应用到降尺度研究中, 在国际上得到了广泛应用。在系统介绍BCSD方法基本理论和步骤的基础上, 基于耦合模式比较计划第五阶段(CMIP5)的多模式数据集研究了该方法在中国区域降水模拟订正和降尺度的适用性。结果表明, 该方法能够很好地降低全球气候模式在中国区域降水的模拟误差, 并且该方法不具有模式依赖性, 对34个模式的模拟都有很好的改进, 显示出很好的应用前景。进一步讨论了BCSD方法的适用范围, 并利用该方法和CMIP5模拟资料构建了一套经过误差订正和降尺度的未来中国区域降水多模式、多情景的数据集。

关键词: 降尺度BCSD误差订正中国气候模式    

Global Climate Models (GCM) are the primary tools for studying past climate change and evaluating the projected future response of climate system to changing atmospheric composition. However, the stateofart GCMs contain large biases in regional or local scales and are often characterized by low resolution which is too coarse to provide the regionalscale information required for regional climate change impact assessment. A popular technique, Bias Correction and Spatial Disaggregation (BCSD), are widespreadly employed to improve the quality of the raw model output and downscaling throughout the world. Unfortunately, this method has not been applied in China. Consequently, the detailed principle and procedure of BCSD are introduced systematically in this study. Furthermore, the applicability of BCSD over China is also examined based on an ensemble of climate models from phase five of the Coupled Model Intercomparison Project (CMIP5), though the excellent performance of it has been validated for other parts of the world in many works. The result shows that BCSD is an effective, modelindependent approach to removing biases of model and downscaling. Finally, application scope of BCSD is discussed, and a suite of fineresolution multimodel climate projections over China is developed based on 34 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from CMIP5.

Key words: China.    Climate model    Bias correction    Downscaling    BCSD
收稿日期: 2013-04-25 出版日期: 2013-10-10
:  P456.7  


作者简介: 王林(1986-),男,河南洛阳人,博士研究生,主要从事干旱研究. E-mail:
E-mail Alert


王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.

Wang Lin,Chen Wen. Application of Bias Correction and Spatial Disaggregation in Removing Model Biases and Downscaling over China. Advances in Earth Science, 2013, 28(10): 1144-1153.


[1]Wang Chenghai, Li Jian, Li Xiaolan, et al. Analysis on quasi-periodic characteristics of precipitation in recent 50 years and trend in next 20 years in China[J]. Arid Zone Research, 2012, 29(1): 1-10.[王澄海, 李健, 李小兰, 等. 近50a中国降水变化的准周期性特征及未来的变化趋势[J]. 干旱区研究, 2012, 29(1): 1-10.]
[2]Wang Yuanhao, Chen Wen, Zhang Jingyong. Interannual variations of summer rainfall and their causes in the mid-latitude arid/semi-arid areas of East Asia[J]. Climatic and Environmental Research, 2012, 17(4): 444-456.[王远皓, 陈文, 张井勇. 东亚中纬度干旱/半干旱区降水年际变化及其可能成因[J]. 气候与环境研究, 2012, 17(4): 444-456.]
[3]Qu Yingle, Gao Xiaoqing, Chen Wen, et al. Comparison of surface air temperatures and precipitation in Eastern and Western China during 1951-2003[J]. Plateau Meteorology, 2008, 27(3): 524-529.[曲迎乐, 高晓清, 陈文, 等. 近50年来我国东、西部地面气温和降水变化对比的初步分析[J]. 高原气象, 2008, 27(3): 524-529.]
[4]Ma Yin, Chen Wen, Feng Ruiquan, et al. Interannual and interdecadal variations of precipitation over Eastern China during Meiyu season and their relationship with the atmospheric circulation and SST[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(2): 397-410.[马音, 陈文, 冯瑞权, 等. 我国东部梅雨期降水的年际和年代际变化特征及其与大气环流和海温的关系[J]. 大气科学, 2012, 36(2): 397-410.]
[5]Ma Jingjin, Gao Xiaoqing, Qu Yingle. The character of precipitation and its relation to climate change over North China in spring and summer[J]. Climatic and Environmental Research, 2006, 11(3): 321-329.[马京津, 高晓清, 曲迎乐. 华北地区春季和夏季降水特征及与气候相关的分析[J]. 气候与环境研究, 2006, 11(3): 321-329.]
[6]Wang S, Li W. Climate of China[M]. Beijing: China Meteorological Press, 2007.
[7]Zhou W, Li C, Chan J C L. The interdecadal variations of the summer monsoon rainfall over South China[J]. Meteorology and Atmospheric Physics, 2006, 93(3/4): 165-175.
[8]Chen Wen, Kang Lihua, Wang Ding. The coupling relationship between summer rainfall in China and global sea surface temperature[J]. Climatic and Environmental Research, 2006, 11(3): 259-269.[陈文, 康丽华, 王玎. 我国夏季降水与全球海温的耦合关系分析[J]. 气候与环境研究, 2006, 11(3): 259-269.]
[9]Zhang Guocai. Extreme events under climate change condition[M]∥
[10]Wang Lin, Chen Wen. Characteristics of multi-timescale variabilities of the drought over last 100 years in Southwest China[J]. Advances in Meteorological Science and Technology, 2012, 2(4): 21-26.[王林, 陈文. 近百年西南地区干旱的多时间尺度演变特征[J]. 气象科技进展, 2012, 2(4): 21-26.]
[11]Solomon S, Qin D, Manning M, et al. The Physical Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.
[12]Fu Congbin, Dong Wenjie, Wen Gang, et al. Regional responses and adaptation to global change[J]. Acta Meteorologica Sinica, 2003, 61(2): 245-250.[符淙斌, 董文杰, 温刚, 等. 全球变化的区域响应和适应[J]. 气象学报, 2003, 61(2): 245-250.]
[13]Seneviratne S, Nicholls N, Easterling D, et al. Changes in climate extremes and their impacts on the natural physical environment[C]∥Christopher B F, Vicente B, Thomas F S, et al, eds. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge: Cambridge University Press, 2012: 109-230.
[14]Giorgi F, Mearns L O. Approaches to the simulation of regional climate change: A review[J]. Reviews of Geophysics, 1991, 29(2): 191-216.
[15]Wilby R L, Wigley T M L. Downscaling general circulation model output: A review of methods and limitations[J]. Progress in Physical Geography, 1997, 21(4): 530-548.
[16]Wood A W, Maurer E P, Kumar A, et al. Long-range experimental hydrologic forecasting for the eastern United States[J]. Journal of Geophysical Research, 2002, 107(D20): 4 429.
[17]Wood A W, Leung L R, Sridhar V, et al. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs[J]. Climatic Change, 2004, 62(1): 189-216.
[18]Widmann M, Bretherton C S, Salathé E P. Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor[J]. Journal of Climate, 2003, 16(5): 799-816.
[19]Maurer E P, Hidalgo H G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods[J]. Hydrology and Earth System Sciences, 2008, 12(2): 551-563.
[20]Hayhoe K, Wake C, Anderson B, et al. Regional climate change projections for the Northeast USA[J]. Mitigation and Adaptation Strategies for Global Change, 2008, 13(5): 425-436.
[21]Sharma D, Das Gupta A, Babel M S. Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand[J]. Hydrology and Earth System Sciences, 2007, 11(4): 1 373-1 390.
[22]Vidal J P, Wade S. A framework for developing high-resolution multi-model climate projections: 21st century scenarios for the UK[J]. International Journal of Climatology, 2008, 28(7): 843-858.
[23]Maurer E P, Brekke L, Pruitt T, et al. Fine-resolution climate projections enhance regional climate change impact studies[J]. Eos Transactions American Geophysical Union, 2007, 88(47): 504.
[24]Wang Chenghai, Wu Yongping, Cui Yang. Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468.[王澄海, 吴永萍, 崔洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.]
[25]Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498.
[26]Gudmundsson L, Bremnes J B, Haugen J E, et al. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods[J]. Hydrology Earth System Sciences, 2012, 16(9): 3 383-3 390.
[27]Hastie T, Tibshirani R, Friedman J H. The Elements of Statistical Learning (Second Edition) [M].Berlin: Springer, 2011.
[28]Givens G H, Hoeting J A. Computational Statistics[M]. New York: John Wiley & Sons, 2005.[Givers G H, Hoeting J A.计算统计[M].王兆军, 刘民千, 邹长亮, 等, 译. 北京: 人民邮电出版社, 2009.]
[29]Lafon T, Dadson S, Buys G, et al. Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods[J]. International Journal of Climatology, 2012, doi: 10.1002/joc.3518.
[30]Piani C, Haerter J, Coppola E. Statistical bias correction for daily precipitation in regional climate models over Europe[J]. Theoretical and Applied Climatology, 2010, 99(1): 187-192.
[31]Department of Earth Sciences, NSFC. Earth Science Development Strategy in the “11th Five-Year Plan”[M]. Beijing: China Meteorological Press, 2006. [国家自然科学基金委员会地球科学部. 地球科学“十一五”发展战略[M]. 北京: 气象出版社, 2006.]
[32]Christensen N S, Wood A W, Voisin N, et al. The effects of climate change on the hydrology and water resources of the Colorado River Basin[J]. Climatic Change, 2004, 62(1): 337-363.
[33]Vidal J P, Wade S D. Multimodel projections of catchment-scale precipitation regime[J]. Journal of Hydrology, 2008, 353(1/2): 143-158.
[1] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[2] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[3] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[4] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[5] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[6] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[7] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.
[8] 陆大道. 辉煌的成就,更高的使命——写在第33届国际地理学大会在北京召开之前[J]. 地球科学进展, 2015, 30(10): 1075-1080.
[9] 贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响*[J]. 地球科学进展, 2014, 29(7): 828-834.
[10] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[11] 魏柱灯, 方修琦, 苏筠, 萧凌波. 过去2 000年气候变化对中国经济与社会发展影响研究综述[J]. 地球科学进展, 2014, 29(3): 336-343.
[12] 潘竟虎, 刘伟圣. 基于腹地划分的中国城市群空间影响范围识别[J]. 地球科学进展, 2014, 29(3): 352-360.
[13] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[14] 葛全胜, 方修琦, 郑景云. 中国历史时期气候变化影响及其应对的启示*[J]. 地球科学进展, 2014, 29(1): 23-29.
[15] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.