Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (10): 1154-1159    DOI: 10.11867/j.issn.1001-8166.2013.10.1154
研究简报     
饱和带地下水曝气修复技术研究进展
刘志彬, 方伟, 陈志龙
东南大学交通学院岩土工程研究所, 江苏 南京 210096
Advances in Air Sparging Technology of Saturated Zone
Liu Zhibin, Fang Wei, Chen Zhilong
Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 210096, China
 全文: PDF(1034 KB)   HTML
摘要:

地下水曝气修复技术是将压缩空气注入地下水饱和带, 提高污染场地内氧气浓度, 挥发及半挥发性有机污染物通过挥发、好氧降解等过程被去除。由于具有成本低、效率高且可原位施工等优点, 挥发性有机污染物地下水曝气修复技术近年来在国际上得到快速发展。在阐明地下水曝气修复基本原理的基础上, 首先对确定地下水曝气修复影响范围的方法及曝气过程空气流动形态可视化技术进行了总结, 接着系统分析了环境地质条件与施工工艺参数对修复效果的影响规律, 然后详细探讨了集总参数和多相流2种主要的地下水曝气修复理论模型。最后基于目前研究及工程实践中存在的问题对未来需开展的研究工作, 包括复杂场地条件下的强化修复方法、地下水曝气修复的微观机理研究以及相关设计施工规范的建立等, 进行了简要分析。

关键词: 环境岩土工程挥发性有机污染物地下水修复地下水曝气法饱和带    
Abstract:

In situ air sparging involves injecting atmospheric air, under pressure, into the saturated zone to remove those volatile and semi-volatile organic groundwater contaminants and to promote their biodegradation by increasing subsurface oxygen concentrations. Due to the advantages of low cost, high efficiency and insitu constructability, groundwater Air Sparging (AS) technology has been quickly developed in the world recently. Based on the explanation of its remediation principle, literature review is done on the research advancement of air sparging technology mainly from three aspects. First, various methods for determination of the zone of influence and visualization techniques of air flow forms during air sparging are summarized. Then the influence of environmental geological conditions and construction technology parameters on the remediation effect of air sparging is systematically analyzed. Thereafter, two main types of air sparging theoretical models including lumped-parameter model and multiphase fluid flow model are discussed respectively in detail. Finally, based on the problems and difficulties existing in present research and engineering practice, several future tasks such as the enhancement remediation techniques in complex geological sites, microscopic intrinsic mechanisms, and establishment of related design and construction standards which require to be done are briefly analyzed.

Key words: Saturated zone    Volatile organic compounds    Air sparging    Groundwater remediation.    Geoenvironmental engineering
收稿日期: 2013-01-22 出版日期: 2013-10-10
:  P641.8  
基金资助:

国家自然科学基金重点项目“城市化过程中天然沉积土污染演化机理与控制技术研究”(编号:41330641)资助.

作者简介: 刘志彬(1976-), 男, 河北灵寿人, 讲师, 主要从事环境岩土工程与工程地质研究.E-mail: seulzb@seu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘志彬
陈志龙
方伟

引用本文:

刘志彬,方伟,陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1154-1159.

Liu Zhibin,Fang Wei,Chen Zhilong. Advances in Air Sparging Technology of Saturated Zone. Advances in Earth Science, 2013, 28(10): 1154-1159.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.10.1154        http://www.adearth.ac.cn/CN/Y2013/V28/I10/1154

[1]Chen Huaqing. Experimental Study and Simulation on Remediation of Groundwater Polluted by NAPLs[D]. Beijing: China University of Geosciences, 2010.[陈华清. 原位曝气修复地下水NAPLs污染实验研究及模拟[D]. 北京: 中国地质大学, 2010.]
[2]Unger A J A, Sudicky E A, Forsyth P A. Mechanisms controlling vacuum extraction coupled with air sparging for remediation of heterogeneous formations contaminated by dense nonaqueous phase liquids[J]. Water Resources Research, 1995, 31(8):1 913-1 926.
[3]Semer R, Reddy K R. Mechanisms controlling toluene removal from saturated soils during in situ air sparging[J]. Journal of Hazardous Materials, 1998, 57(1/3):209-230.
[4]Johnson P C. Assessment of the contributions of volatilization and biodegradation to in situ air sparging performance[J]. Environmental Science & Technology, 1998, 32(2):276-281.
[5]Wilson D J, Gomez-Lahoz C, Rodriguez-maroto J M. Groundwater cleanup by in-situ sparging. VIII. Effect of air channeling on dissolved volatile organic compounds removal efficiency[J]. Separation Science and Technology, 1994, 29(18):2 387-2 418.
[6]Wilson D J. Groundwater cleanup by in-situ sparging. II. Modeling of dissolved volatile organic compound removal[J]. Separation Science and Technology, 1992, 27(13):1 675-1 690.
[7]Mccray J E, Falta R W. Defining the air sparging radius of influence for groundwater remediation[J]. Journal of Contaminant Hydrology, 1996, 24(1):25-52.
[8]Hu L, Wu X, Liu Y, et al. Physical modeling of air flow during air sparging remediation[J]. Environmental Science & Technology, 2010, 44(10): 3 883-3 888.
[9]Semer R, Adams J, Reddy K. An experimental investigation of air flow patterns in saturated soils during air sparging[J]. Geotechnical and Geological Engineering, 1998, 16(1):59-75.
[10]Zhang Ying. Study on Organic Chemicals Removal Using Air Sparging[D]. Tianjin: Tianjin University, 2004.[张英. 地下水曝气(AS)处理有机物的研究[D]. 天津:天津大学, 2004.]
[11]Lundegard P D, Andersen G. Multiphase numerical simulation of air sparging performance[J]. Ground Water, 1996, 34(3):451-460.
[12]Hu Liming, Liu Yan, Du Jianting, et al. Centrifuge modeling of air-sparging technique for groundwater remediation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2):297-301.[胡黎明, 刘燕, 杜建廷, 等. 地下水曝气修复过程离心模型试验研究[J]. 岩土工程学报, 2011, 33(2):297-301.]
[13]Ji W, Dahmani A, Ahlfeld D P, et al. Laboratory study of air sparging: Air flow visualization[J]. Ground Water Monitoring & Remediation, 1993, 13(4):115-126.
[14]Mccray J E, Falta R W. Numerical simulation of air sparging for remediation of NAPL contamination[J]. Ground Water, 1997, 35(1):99-110.
[15]Peterson J, Lepczyk P, Lake K. Effect of sediment size on area of influence during groundwater remediation by air sparging: A laboratory approach[J]. Environmental Geology, 1999, 38(1):1-6.
[16]Adams J A, Reddy K R. Laboratory study of air sparging of TCE-contaminated saturated soils and ground water[J]. Ground Water Monitoring & Remediation, 1999, 19(3):182-190.
[17]Lundegard P D, Labrecque D. Air sparging in a sandy aquifer (Florence, Oregon, U.S.A): Actual and apparent radius of influence[J]. Journal of Contaminant Hydrology, 1995, 19(1):1-27.
[18]Chen M R, Hinkley R E, Killough J E. Computed tomography imaging of air sparging in porous media[J]. Water Resources Research, 1996, 32(10):3 013-3 024.
[19]Hu Liming, Liu Yi. Physical modeling of air-sparging technique for groundwater remediation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6):835-839.[胡黎明, 刘毅. 地下水曝气修复技术的模型试验研究[J]. 岩土工程学报, 2008, 30(6): 835-839.]
[20]Peterson J W, Murray K S, Tulu Y I, et al. Air-flow geometry in air sparging of fine-grained sands[J]. Hydrogeology Journal, 2001, 9(2):168-176.
[21]Braida W, Ong S K. Influence of porous media and airflow rate on the fate of NAPLs under air sparging[J]. Transport in Porous Media, 2000, 38(1/2):29-42.
[22]Peterson J W, Deboer M J, Lake K L. A laboratory simulation of toluene cleanup by air sparging of water-saturated sands[J]. Journal of Hazardous Materials, 2000, 72(2/3):167-178.
[23]Reddy K R, Adams J A. Effects of soil heterogeneity on airflow patterns and hydrocarbon removal during in situ air sparging[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3):234-247.
[24]Reddy K R, Adams J A. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging[J]. Journal of Hazardous Materials, 2000, 72(2/3):147-165.
[25]Powers S E, Loureiro C O, Abriola L M, et al. Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems[J]. Water Resources Research, 1991, 27(4): 463-477.
[26]Burns S E, Zhang M. Effects of system parameters on the physical characteristics of bubbles produced through air sparging[J]. Environmental Science & Technology, 2001, 35(1):204-208.
[27]Marulanda C, Culligan P J, Germaine J T. Centrifuge modeling of air sparging—A study of air flow through saturated porous media[J]. Journal of Hazardous Materials, 2000, 72(2/3):179-215.
[28]Yang X, Bechkmann D, Fiorenza S, et al. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater[J]. Environmental Science & Technology, 2005, 39(18): 7 279-7 286.
[29]Rahbeh M, Mohtar R. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction[J]. Journal of Hazardous Materials, 2007, 143(1/2):156-170.
[30]Kim H M, Hyun Y, Lee K K. Remediation of TCE-contaminated groundwater in a sandy aquifer using pulsed air sparging: Laboratory and numerical studies[J]. Journal of Environmental Engineering, 2007, 133(4):380-388.
[31]Aivalioti M V, Gidarakos E L. In-well air sparging efficiency in remediating the aquifer of a petroleum refinery site[J]. Journal of Environmental Engineering and Science, 2008, 7(1):71-82.
[32]Elder C R, Benson C H, Eykholt G R. Modeling mass removal during in situ air sparging[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(11):947-958.
[33]Reddy K R, Adams J A. System effects on benzene removal from saturated soils and ground water using air sparging[J]. Journal of Environmental Engineering, 1998, 124(3):288-299.
[34]Braida W, Ong S K. Modeling of air sparging of VOC-contaminated soil columns[J]. Journal of Contaminant Hydrology, 2000, 41(3/4):385-402.
[35]Rabideau A J, Blayden J M, Ganguly C. Field performance of air-sparging system for removing TCE from groundwater[J]. Environmental Science & Technology, 1999, 33(1):157-162.
[36]Sellers K L, Schreiber R P. Air sparging model for predicting groundwater cleanup rate[C]∥Proceedings of the 1992 Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection and Restoration. Houston, TX, 1992:365-376.
[37]Chao K P, Ong S K, Protopapas A. Water-to-air mass transfer of VOCs: Laboratory-scale air sparging system[J]. Journal of Environmental Engineering, 1998, 124(11):1 054-1 060.
[38]Braida W J, Ong S K. Air sparging: Air-water mass transfer coefficients[J]. Water Resources Research, 1998, 34(12):3 245-3 254.
[39]Van Dijke M I J, Van Der Zee S. Modeling of air sparging in a layered soil: Numerical and analytical approximations[J]. Journal of Geophysical Research, 1998, 34(3):341-353.
[40]Mei C C, Cheng Z, Ng C O. A model for flow induced by steady air venting and air sparging[J]. Applied Mathematical Modelling, 2002, 26(7):727-750.
[41]Falta R W. Numerical modeling of kinetic interphase mass transfer during air sparging using a dual-media approach[J]. Water Resources Research, 2000, 36(12):3 391-3 400.
[42]Vanantwerp D J, Falta R W, Gierke J S. Numerical simulation of field-scale contaminant mass transfer during air sparging[J]. Vadose Zone Journal, 2008, 7(1):294-304.
[43]Kim H, Soh H E, Annable M D, et al. Surfactant-enhanced air sparging in saturated sand[J]. Environmental Science and Technology, 2004, 38(4):1 170-1 175.
[44]Zheng W, Zhao Y S, Qin C Y, et al. Study on mechanisms and effect of surfactant-enhanced air sparging[J]. Water Environment Research, 2010, 82(11):2 258-2 264.
[45]Urum K, Pekdemir T, Ross D, et al. Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants[J]. Chemosphere, 2005, 60(3):334-343.
[46]Mohamed A M I, El-Menshawy N, Saif A M. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement[J]. Journal of Environmental Management, 2007, 83(3):339-350.
[47]Tsai Y J, Kuo Y C, Chen T C. Groundwater remediation using a novel micro-bubble sparging method[J]. Journal of Environmental Engineering and Management, 2007, 17(2):151-155.
[48]Bhuyan S J, Latin M R. BTEX remediation under challenging site conditions using in-situ ozone injection and soil vapor extraction technologies: A case study[J]. Soil and Sediment Contamination: An International Journal, 2012, 21(4):545-556.
[49]Gao S, Meegoda J N, Hu L. Microscopic modeling of air migration during air sparging[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15(2):70-79.
[50]Gao S, Meegoda J N, Hu L. Simulation of dynamic two-phase flow during multistep air sparging[J]. Transport in Porous Media, 2013, 96(1):173-192.
[1] 周游,倪师军,施泽明. 四川盆地东北部某储卤构造深层卤水资源量容积法评价的改进模型研究[J]. 地球科学进展, 2013, 28(6): 703-708.
[2] 刘中培, 于福荣, 焦建伟. 农业种植规模与降水量变化对农用地下水开采量影响识别[J]. 地球科学进展, 2012, 27(2): 240-245.