[1] |
Stocker T F, Qin D, Plattne G K, et al.Climate change 2013: The physical science basis[M]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
|
[2] |
Arce G L A F, Carvalho J J A, Nascimento L F C. A time series sequestration and storage model of atmospheric carbon dioxide[J]. Ecological Modeling, 2014, 272: 59-67.
|
[3] |
Voormeij D A, Simandl G J.Geological, ocean, and mineral CO2 sequestration options: A technical review[J]. Geoscience Canada, 2004, 31(1): 11-22.
|
[4] |
Metz B, Davidson O, De Coninck H C, et al. IPCC Special Report On Carbon Dioxide Capture And Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2005.
|
[5] |
Geibert W, Assmy P, Bakker D C E, et al. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3007.
|
[6] |
Köhler P, Abrams J F, Völker C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters, 2013, 8(1), doi:10.1088/1748-932618/1/014009.
|
[7] |
Sun Shu.Geological problems of CO2 underground storage and its significance on mitigating climate change[J]. China Basic Science, 2006, 8(3): 17-22.
|
|
[孙枢. CO2地下封存的地质学问题及其对减缓气候变化的意义[J]. 中国基础科学, 2006, 8(3): 17-22.]
|
[8] |
Li L, Zhao N, Wei W, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108: 112-130.
|
[9] |
Kovscek A R, Wang Y.Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation[J]. Energy Conversion and Management, 2005, 46(11): 1 920-1 940.
|
[10] |
Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
|
[11] |
Hao Yanjun, Yang Dinghui.Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research[J].Progress in Geophysics, 2012, 27(6): 2 369-2 383.
|
|
[郝艳军, 杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J].地球物理学进展, 2013, 27(6): 2 369-2 383.]
|
[12] |
Wang Jianxiu, Wu Yuanbin, Yu Haipeng.Review of the technology for sequestration of carbon dioxide[J]. Chinese Journal of Underground Space and Engineering, 2013, 1: 81-90.
|
|
[王建秀, 吴远斌, 于海鹏. 二氧化碳封存技术研究进展[J]. 地下空间与工程学报, 2013, 1: 81-90.]
|
[13] |
Ridgwell A, Rodengen T J, Kohfeld K E.Geographical variations in the effectiveness and side effects of deep ocean carbon sequestration[J]. Geophysical Research Letters, 2011, 38(17): L17610, doi:10.1029/2011GL048423.
|
[14] |
Blondes M S, Schuenemeyer J H, Olea R A, et al. Aggregation of carbon dioxide sequestration storage assessment units[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(8): 1 839-1 859.
|
[15] |
Xue Liang, Yu Weidong, Ning Chunlin, et al. Advances in sea surface partial pressure of CO2 time series studies[J]. Advances in Earth Science, 2013, 28(8): 859-865.
|
|
[薛亮, 于卫东, 宁春林, 等. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.]
|
[16] |
Matter J M, Broecker W S, Gislason S R, et al. The CarbFix Pilot Project—Storing carbon dioxide in basalt[J]. Energy Procedia, 2011, 4: 5 579-5 585.
|
[17] |
Adams E E, Caldeira K.Ocean storage of CO2[J]. Elements, 2008, 4(5): 319-324.
|
[18] |
Williamson P, Turley C.Ocean acidification in a geoengineering context[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1 974): 4 317-4 342.
|
[19] |
Marchetti C. On geoengineering and the CO2 problem[J]. Climate Change, 1977, 1: 59-68.
|
[20] |
Socolofsky S A, Bhaumik T. Dissolution of direct ocean carbon sequestration plumes using an integral model approach[J]. Journal of Hydraulic Engineering, 2008, 134(11): 1570-1578.
|
[21] |
Smyth R C, Meckel T A.Best management practices for subseabed geologic sequestration of carbon dioxide[C]// Oceans.IEEE, 2012: 1-6.
|
[22] |
Qanbari F, Pooladi-Darvish M, Tabatabaie S H, et al. CO2 disposal as hydrate in ocean sediments[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 139-149.
|
[23] |
Rehder G, Kirby S H, Durham W B, et al. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 285-292.
|
[24] |
Tohidi B, Yang J, Salehabadi M, et al. CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2[J]. Environmental Science & Technology, 2010, 44(4): 1 509-1 514.
|
[25] |
Golomb D, Pennell S, Ryan D, et al. Ocean sequestration of carbon dioxide: Modeling the deep ocean release of a dense emulsion of liquid CO2-in-water stabilized by pulverized limestone particles[J]. Environmental Science & Technology, 2007, 41(13): 4 698-4 704.
|
[26] |
Lee S, Liang L, Riestenberg D, et al. CO2 hydrate composite for ocean carbon sequestration[J]. Environmental Science & Technology, 2003, 37(16): 3 701-3 708.
|
[27] |
Li Qi, Liu Guizhen, Zhang Jian, et al. Status and suggestion of environmental monitoring for CO2 geological storage[J]. Advances in Earth Science, 2013, 28(6): 718-727.
|
|
[李琦, 刘桂臻, 张建, 等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.]
|
[28] |
Matsumoto K, Mignone B K.Model simulations of carbon sequestration in the northwest Pacific by direct injection[J]. Journal of Oceanography, 2005, 61(4): 747-760.
|
[29] |
Masuda Y, Yamanaka Y, Sasai Y.Optimization of the horizontal shape of CO2 injected domain and the depths of release in moving-ship type CO2 ocean sequestration[J]. Journal of Marine Science and Technology, 2013, 18(2): 220-228.
|
[30] |
Masuda Y, Yamanaka Y, Sasai Y, et al. Site selection in CO2 ocean sequestration: Dependence of CO2 injection rate on eddy activity distribution[J]. International Journal of Greenhouse Gas Control, 2009, 3(1): 67-76.
|
[31] |
Xue M, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76(3/4): 143-165.
|
[32] |
Lackner K S, Brennan S.Envisioning carbon capture and storage: Expanded possibilities due to air capture, leakage insurance, and C-14 monitoring[J]. Climatic Change, 2009, 96(3): 357-378.
|
[33] |
Zhang Hongxiang, Li Xiaochun, Wei Ning.The major technology track and analysis about carbon dioxide capture and storage[J]. Advances in Earth Science, 2010, 25(3): 335-340.
|
|
[张鸿翔, 李小春, 魏宁. 二氧化碳捕获与封存的主要技术环节与问题分析[J]. 地球科学进展, 2010, 25(3): 335-340.]
|
[34] |
Hammer K M, Pedersen S A.Deep-water prawn Pandalus borealis displays a relatively high pH regulatory capacity in response to CO2-induced acidosis[J]. Marine Ecology, 2013, 492: 139-151.
|
[35] |
House K Z, Schrag D P, Harvey C F, et al. Permanent carbon dioxide storage in deep-sea sediments[J]. Proceedings of the National Academy of Sciences, 2006, 103(33): 12 291-12 295.
|
[36] |
Levine J S, Matter J M, Goldberg D, et al. Gravitational trapping of carbon dioxide in deep sea sediments: Permeability, buoyancy, and geomechanical analysis[J]. Geophysical Research Letters, 2007, 34(24): L24703, doi:10.1029/2007GL031560.
|
[37] |
Koide H, Shindo Y, Tazaki Y, et al. Deep sub-seabed disposal of CO2—The most protective storage[J]. Energy Conversion and Management, 1997, 38: S253-S258.
|
[38] |
Eccles J K, Pratson L.Global CO2 storage potential of self-sealing marine sedimentary strata[J]. Geophysical Research Letters, 2012, 39(19): L19604, doi:10.1029/2012GL053758.
|
[39] |
Slagle A L, Goldberg D S.Evaluation of ocean crustal sites 1256 and 504 for long-term CO2 sequestration[J]. Geophysical Research Letters, 2011, 38(16):L16307, doi:10.1029/2011/GL048613.
|
[40] |
Prasad P S R, Sarma D S, Charan S N. Mineral trapping and sequestration of carbon-dioxide in deccan basalts: SEM, FTIR and raman spectroscopic studies on secondary carbonates[J]. Journal of the Geological Society of India, 2012, 80(4): 546-552.
|
[41] |
Gislason S R, Oelkers E H.Carbon storage in basalt[J]. Science, 2014, 344(6 182): 373-374.
|
[42] |
Goldberg D S, Takahashi T, Slagle A L.Carbon dioxide sequestration in deep-sea basalt[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9 920-9 925.
|
[43] |
Li Zhiwei.The Analysis and Control of Long-term Stability of the CO2 Geological Sequestration of Salt Water Layer [D]. Beijing: Beijing Jiaotong University, 2012.
|
|
[李志伟. 咸水层CO2地质封存的长期稳定性分析及控制[D]. 北京:北京交通大学, 2012.]
|
[44] |
Goldberg D S, Lackner K S, Han P, et al. Co-location of air capture, subseafloor CO2 sequestration, and energy production on the Kerguelen plateau[J]. Environmental Science & Technology, 2013, 47(13): 7 521-7 529.
|
[45] |
Schrag D P.Storage of carbon dioxide in offshore sediments[J]. Science, 2009, 325(5 948): 1 658-1 659.
|
[46] |
Li Q, Wu Z, Li X.Prediction of CO2 leakage during sequestration into marine sedimentary strata[J]. Energy Conversion and Management, 2009, 50(3): 503-509.
|
[47] |
Goldberg D, Slagle A L.A global assessment of deep-sea basalt sites for carbon[J].Energy Procedia, 2009, 1(1): 3 675-3 682.
|
[48] |
Marieni C, Henstock T J, Teagle D A H. Geological storage of CO2 within the oceanic crust by gravitational trapping[J]. Geophysical Research Letters, 2013, 40(23): 6 219-6 224.
|
[49] |
Shaffer G.Long-term effectiveness and consequences of carbon dioxide sequestration[J]. Nature Geoscience, 2010, 3(7): 464-467.
|
[50] |
de Orte M R, Lombardi A T, Sarmiento A M, et al. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison[J]. Marine Environmental Research, 2014, 96: 136-144.
|
[51] |
de Orte M R, Sarmiento A M, Basallote M D, et al. Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations [J]. Science of the Total Environment, 2014, 470/471: 356-363.
|
[52] |
de la Haye K L, Spicer J I, Widdicombe S, et al. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean[J]. Journal of Experimental Marine Biology and Ecology, 2012, 412: 134-140.
|
[53] |
Kita J, Kikkawa T, Asai T, et al. Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica[J]. Marine Pollution Bulletin, 2013, 73(2): 402-408.
|
[54] |
Kamenos N A, Burdett H L, Aloisio E, et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification[J]. Global Change Biology, 2013, 19(12): 3 621-3 628.
|
[55] |
Spicer J I, Widdicombe S. A cute extracellular acid-base disturbance in the burrowing sea urchin Brissopsis lyrifera during exposure to a simulated CO2 release[J]. Science of the Total Environment, 2012, 427/428: 203-207.
|
[56] |
Shitashima K, Maeda Y, Koike Y, et al. Natural analogue of the rise and dissolution of liquid CO2 in the ocean[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 95-104.
|
[57] |
Shitashima K, Maeda Y, Ohsumi T.Development of detection and monitoring techniques of CO2 leakage from seafloor in sub-seabed CO2 storage[J]. Applied Geochemistry, 2013, 30: 114-124.
|
[58] |
Caramanna G, Fietzek P, Maroto-Valer M.Monitoring techniques of a natural analogue for sub-seabed CO2 leakages[J]. Energy Procedia, 2011, 4: 3 262-3 268.
|
[59] |
Payán M C, Verbinnen B, Galan B, et al. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment[J]. Environmental Pollution, 2012, 162: 29-39.
|
[60] |
Jiang X, Akber Hassan W A, Gluyas J. Modelling and monitoring of geological carbon storage: A perspective on cross-validation[J]. Applied Energy, 2013, 112: 784-792.
|