地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1224 -1236. doi: 10.11867/j.issn.1001-8166.2006.12.1224

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

青藏高原地区能量水分循环:地表能量平衡和湍流热通量
苏中波 1,张廷 2,马耀明 3,贾立 4,文军 5   
  1. 1.International Institute for Geo-Information Science and Earth Observation ITC Enschede 7500AA, the Netherlands; 2.天津市政工程局科学技术部,天津 300022;3.中国科学院青藏高原研究所,北京 100085; 4.Alterra Green World Research,Wageningen University and Research Centre Wagenigen 6700AA,the Netherlands;5.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2006-10-17 修回日期:2006-10-17 出版日期:2006-12-15
  • 通讯作者: 苏中波 E-mail:b_Su@itc.nl

Energy and Water Cycle over the Tibetan Plateau: Surface Energy Balance and Turbulent Heat Fluxes

Su Zhongbo 1,Zhang Ting 2,Ma Yaoming 3,Jia Li 4,Wen Jun 5   

  1. 1.International Institute for Geo-Information Science and Earth Observation ITC Enschede 7500AA,the Netherlands; 2.Science & Technology Department, Tianjin Municipal Engineering Bureau,Tianjin 300022,China; 3.Institute of Tibetan Plateau Research, CAS, Beijing 100085,China; 4.Alterra Green World Research, Wageningen University and Research Centre Wagenigen 6700AA,the Netherlands;5.Cold and Arid Regions Environmental and Engineering Research Institute, CAS,Lanzhou 730000,China
  • Received:2006-10-17 Revised:2006-10-17 Online:2006-12-15 Published:2006-12-15

文章给出了青藏高原能量水分循环研究的概况和总结,着重估计了能量平衡各分项和湍流热通量等。在能量平衡的计算基础上,尽管能量不平衡的原因解释仍有争论并且没有解决,但我们揭示了GAME/Tibet试验观测资料中能量不平衡现象。我们发现估算的潜热通量比实际观测的要高许多。然而,根据能量平衡假设的计算结果和SEBS的估算一致性很好。在此基础上可以归纳出差异主要由GAME/Tibet试验观测资料中能量不平衡引起,潜热通量的实际观测可能偏小。

This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy imbalance exist in GAME/Tibet experiment data, although the explanations for the reasons are debated now and not resolved yet. We found that the derived latent heat flux is much higher than the measurements. However, the corrected-measurements, which are calculated according to the hypothesis of the energy balance, compare very well with the estimation of SEBS. On this basis it is concluded that the deviation is caused by the energy imbalance of ground measurements in GAME/Tibet experiment area. The latent heat fluxes were likely under-observed.

中图分类号: 

[1] Ye D, Gao Y X. The Meteorology of the Qinghai-Xizang(Tibet) Plateau[M]. Beijing: Science Press, Beijing,1979:278.

[2] Barnett T P, Denil L, Schlese U, et al. The effect of Eurasian snow cover on regional and global climate variations[J]. Journal of Atmospheric Sciences,1989,46:661- 685.

[3] Vernekar A D,Zhou J,Shukla J. The effect of Eurasian snow cover on the Indian monsoon[J]. Journal of Climate,1995:8:248-266.

[4] Su Z, Menenti M, eds. Mesoscale Climate Hydrology: The Contribution of the New Observing Systems[R]. Report USP-2, 99-05, Publications of the National Remote Sensing Board (BCRS),1999.

[5] Su Z, Jacobs C, eds. Advanced Earth Observation-Land Surface Climate[R]. Report USP-2, 01-02, Publications of the National Remote Sensing Board (BCRS), 2001.

[6] Su Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-99.

[7] Monteith J L. Principles of Environmental Physics[M]. London: Edward Arnold Press,1973:241.

[8] Kustas W P, Daughtry C S T. Estimation of the soil heat flux/net radiation ratio from spectral data[J]. Agricultural and Forestogy Meteorology,1989,49:205-223.

[9] Brutsaert W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions[J]. Review of Geophy,1999,37:439-451.

[10] Massman W J. An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure[J]. Boundary-Layer Meteorology,1997,83:407-421.

[11] Su Z, Schmugge T, Kustas W P, et al. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere[J]. Journal of Applied Meteorology,2001,40:1 933-1 951.

[12] Brutsaert W. Evaporation into the Atmosphere[M]. D. Reidel Publishing Company,Dordrecht,Holland,1982:299.

[13] Wieringa J. Roughness-dependent geographical interpolation of surface wind speed averages[J]. Quarterly Journal of Royal Meteorological Society,1986,112:867-889.

[14] Wieringa J. Representative roughness parameters for homogeneous terrain[J]. Boundary-Layer Meteorology, 1993, 63:323-363.

[15] Bosveld F C. Exchange processes between a coniferous forest and the atmosphere[D]. Wageningen Agricultural University,1999:181.

[16] Massman W J. Molecular diffusivities of Hg vapor in air, O2 and N2 near STP and the kinematic viscosity and the thermal diffusivity of air near STP[J]. Atmospheric Environment,1999,33:453-457.

[17] Choudhury B J, Monteith J L. A four layer model for the heat budget of homogeneous land surfaces[J]. Quarterly Journal of the Royal Meteorological Society,1988,114:373-398.

[18] Monteith J L. Evaporation and environment[J]. Symposia of the Society Experimental Biolology,1965,19:205-234.

[19] Menenti M. Physical Aspects of and Determination of Evaporation in Deserts Applying Remote Sensing Techniques[R]. Report 10 (special issue), Institute for Land and Water Management Research(ICW), The Netherlands,1984.

[20] Ma Y M. Estimation of surface heat fluxes using satellite and meteorological observations[D]. Wageningen University,2006.

[21] Webb E K, Pearman G I, Leuning R. Correction of flux measurement for density effects due to heat and water vapour transfer'[J]. Quarterly Journal of Royal Meteorological Society,1980,106:85-100.

[22] Tanaka K, Ishikawa H, Hayashi T, et al. Surface energy budget at amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J]. Journal of Meteorological Society of Japan,2001,79(1B):505-517.

[23] Yang K, Koike T, Ishikawa H, et al. A numerical investigation of observed energy imbalance at a site of GAME-Tibet[J]. Boundary Layer Meteorology,2002.

[24] Ishikawa H, Hayashi T, Tanaka T. Summary and the Preliminary Results of PBL Observation[C] Proceedings of the 1st International Workshop on GAME-Tibet. Xi'an, China, 11-13, January 1999:69-72.

[25] Bian L, Gao Z, Xu X, et al. Measurements of Turbulence Transfer in the Near-surface Layer over the Southeastern Tibetan Plateau[J]. Boundary-Layer Meteorol,2002,102:281-300.

[26] Miyazaki S, Tsukamoto O, Kaihotsu I, et al. The energy imbalances observed in Tibetan Plateau and Mongolian Plateau[C]//The 2nd Session of International Workshop on TIPEX-GAME/Tibet. 20-22, July 2000,Kunming,China,1-3.

[27] Wang J M, Kim J, Liou Y, et al. Energy balance analysis and one-dimensional simulation of land surface processes in a short-grass site of central Tibetan Plateau[C] //Proceeding of the 1st International Workshop on GAME-Tibet. Xi'an, China, 11-13, January 1999:73-76.

[28] Kim J, Hong J, Hong S Y, et al. On measuring and modeling surface energy partitioning in a Tibetan Prairie during GAME-IOP 1998[C]// Proceedings of the Fifth International Study Conference on GEWEX in Asia and GAME. Volume I. Nagoya, Japan, 3-5, October, 2001:19-25.

[29] Kim J, Hong J, Gao Z, et al. Can we close the surface energy budget in the Tibetan Plateau[C] The 2nd Session of International Workshop on TIPEX-GAME/Tibet. 20-22, July 2000, Kunming, China, 13-16.

[30] Zhang T. Validation of SEBS over Large Areas of Tibet Using Satellite and Field Data from Tibet experiment[R]. Centre for Geo-Information, Wageningen University, 2003.

[31] Yang K, Koike T, Ishikawa H, et al. Analysis of the surface energy budget at a site of GAME/Tibet using a single-source model[J]. Journal of Meteorological Society of Japan,2004,82(1): 131-153.

[1] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[2] 孟春雷. 城市地表特征数值模拟研究进展[J]. 地球科学进展, 2014, 29(4): 464-474.
[3] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[4] 谢永坤, 刘玉芝, 黄建平, 王国印. 雪冰反馈对北半球经向温度梯度的影响[J]. 地球科学进展, 2013, 28(11): 1276-1282.
[5] 蒋维楣,苗世光,张宁,刘红年,胡非,李磊,王咏薇,王成刚. 城市气象环境与边界层数值模拟研究[J]. 地球科学进展, 2010, 25(5): 463-473.
[6] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[7] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[8] 蒋维楣,王咏薇,张宁. 城市陆面过程与边界层结构研究[J]. 地球科学进展, 2009, 24(4): 411-419.
[9] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[10] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
[11] 杨启国;杨兴国;马鹏里;王润元;刘宏谊. 陇中黄土高原冬季地表辐射和能量平衡特征[J]. 地球科学进展, 2005, 20(9): 1012-1021.
[12] 胡隐樵. 黑河实验(HEIFE)能量平衡和水汽输送研究进展[J]. 地球科学进展, 1994, 9(4): 30-34.
阅读次数
全文


摘要