地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1215 -1223. doi: 10.11867/j.issn.1001-8166.2006.12.1215

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

青藏高原复杂地表能量通量研究
马耀明 1,2,姚檀栋 1,2,王介民 2,胡泽勇 2,石川裕彦 3,马伟强 2,M. Menenti 4,苏中波 5   
  1. 1.中国科学院青藏高原研究所,北京 100085;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;3.京都大学防灾研究所,京都府宇治市;4.Istituto Per i Sistemi Agricoli e Forestali del Mediterraneo, CNR, Naples, Italy; 5. International Institute for Geo-Information Science and Earth Observation, Enschede, the Netherlands
  • 收稿日期:2006-10-11 修回日期:2006-10-29 出版日期:2006-12-15
  • 通讯作者: 马耀明 E-mail:ymma@itpcas.as.cn
  • 基金资助:

    国家重点基础研究发展计划项目“青藏高原环境变化及其对全球变化的响应与适应对策”(编号:2005CB422003);国家自然科学基金项目“西藏高原能量水循环降雨共同观测研究”(编号:40520140126);“青藏高原纳木错地区近地层能量交换及环流变化观测研究”(编号:40675012)共同资助.

The Study on the Land Surface Heat Fluxes over Heterogeneous Landscape of the Tibetan Plateau

Ma Yaoming 1,2,Yao Tandong 1,2,Wang Jiemin 2,Hu Zeyong 2,Hirohiko Ishikawa 3,Ma Weiqiang 2,M. Menenti 4,Su Zhongbo 5   

  1. 1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China; 2.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 3.Disaster Prevention Research Institute, Kyoto University, Kyoto,Japan; 4.Istituto Per i Sistemi Agricoli e Forestali del Mediterraneo, CNR, Naples, Italy; 5. International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands
  • Received:2006-10-11 Revised:2006-10-29 Online:2006-12-15 Published:2006-12-15

“全球能量水循环之亚洲季风青藏高原试验研究”(GAME/Tibet)和“全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验研究”(CAMP/Tibet)的加强期观测和长期观测已经进行了9年多,并且已取得了大量的珍贵资料。首先介绍了GAME/Tibet 和CAMP/Tibet 试验的情况,并利用观测资料给出了局地能量分布(日变化和月际变化)特征。复杂地表区域能量通量研究是青藏高原地气相互作用研究中的重中之重。卫星遥感的应用成为解决这一问题,即实现GAME/Tibet和CAMP/Tibet试验主要初衷的必不可少的手段。利用卫星遥感观测(Landsat-7 ETM)资料结合地面观测的方法,计算得到了相关地区非均匀地表区域上的地表温度、地表反射率、标准化差值植被指数(NDVI)、校准的调整土壤植被指数(MSAVI)、植被覆盖度和叶面指数(LAI)及能量平衡各分量(净辐射通量、土壤热通量、感热和潜热通量)的分布图像,所得结果基本可信。为了得到整个青藏高原复杂地表的热通量分布,中国科学院青藏高原研究所正在与其他研究单位一起建立青藏高原地表和大气过程监测系统(MORP)。最后介绍了该监测计划和已建立的3个综合观测研究站及如何利用建立的台站把站点观测的热通量推广到整个青藏高原的途径。

    The exchange of heat fluxes between land surface and atmosphere over the Tibetan plateau area plays an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. It was also regarded as the main task in the GEWEX (Global Energy and Water Cycle Experiment) Asian Monsoon Experiment on the Tibetan plateau (GAME/Tibet, 1996-2000) and CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Tibetan plateau (CAMP/Tibet, 2001-2006). Firstly, the field experiments of the GAME/Tibet and the CAMP/Tibet are introduced and some results on the local energy partitioning (the diurnal variations and intermonthly variations of radiation energy budget and land surface energy budget) are presented in this study.
The study of the regional distribution of land surface heat fluxes of paramount importance over heterogeneous landscape of the Tibetan Plateau  is also one of the main scientific objectives of the GAME/Tibet and the CAMP/Tibet. Therefore, the regional distributions and their inter-monthly variations of surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) are also presented here by combining five Landsat-7 ETM images with the field observations. The derived results were validated by using the “ground truth”, and it shows that the derived regional distributions and their inter-monthly variations of land surface heat fluxes are reasonable.
    In order to upscale the land surface heat fluxes to the whole Tibetan Plateau area, the Institute of Tibetan Plateau Research (ITP) of the Chinese Academy of Sciences (CAS) is establishing a monitoring and Research Platform (MORP) for land surface and atmospheric processes on the Tibetan plateau. The establishing and monitoring plan of longterm scale (5-10 years) of the MORP, three new comprehensive observation and study stations (Mt. Qomolangma?Mt. Everest, Nam Cuo and Linzhi) and the up-scaling way were also introduced in this paper.

中图分类号: 

[1] Ye Duzheng, Gao Youxi. Tibetan Plateau Meteorology [M]. Beijing: Science Press, 1979:1-278.[叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979:1-278.]

[2] Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. Journal Meteorological Society of Japan, 1992, 70: 319-351.

[3] Ye D, Wu G. The role of heat source of the Tibetan Plateau in the general circulation [J]. Meteorological and Atmospheric Physics, 1998, 67(1/4):181-198.

[4] Wu G, Zhang Y. Tibetan Plateau forcing and timing of the Monsoon onset over south Asia and the south China sea[J]. Month Weather Review, 1998, 126: 913-927.

[5] Tao Shiyan, Chen Lianshou, Xu Xiangde, et al. Progresses of the Theoretical Study in the Second Tibetan Plateau Experiment of Atmospheric Sciences (Part) [M]. Beijing: China Meteorological Press, 1998: 1-348.[陶诗言,陈联寿,徐祥德,.第二次靑藏高原大气科学试验理论硏究进展()[M].北京:气象出版社,1998:1-348.]

[6] MaYaoming, Tsukamoto Osamo, Wu Xiaoming, et al. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan Plateau area [J]. Chinese Journal of Atmospheric Sciences, 2000, 24(5): 715-722.[马耀明,塚本修,吴晓鸣,.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学,2000,24(5):715-722.]

[7] Zhou Mingyu, Xu Xiangde, Bian Lin'gen, et al. Observational Analysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau [M]. Beijing: China Meteorological Press, 2000:1-97. [周明煜,徐祥德,卞林根,.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社,2000:1-97.]

[8] Chen Jiayi, Zhang Hongsheng, Liu Huizhi, et al. The characteristics of radiation balance components of the Tibetan Plateau in the summer of 1998 [J]. Chinese Journal of Atmospheric Sciences, 2001, 25(5): 577-588. [陈家宜,张宏升,刘辉志,. 1998年夏季青藏高原辐射平衡分量分析[J].大气科学,2001, 25(5): 577-588.]

[9] Wu Guoxiong, Mao Jiangyu, Duan Anmin, et al. Recent progress in the study on the impact of Tibetan Plateau on Asian summer climate [J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540. [吴国雄,毛江玉,段安民, . 青藏高原影响亚洲夏季气候研究的最新进展 [J]. 气象学报,2004, 62(5):528-540.]

[10] Wu Guoxiong, Liu Yimin, Liu Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1):47-56.[吴国雄, 刘屹岷, 刘新,,青藏高原加热如何影响亚洲夏季的气候格局 [J],大气科学,2005,29(1):47-56.]

[11] Hu Yinqiao, Qi Yuejin. The combinatory method to determine the turbulent fluxes and the universal functions in the surface layer [J]. Acta Meteorologica Sinica, 1991, 49(1):46-53. [胡隐樵,奇跃进. 组合法确定近地面层湍流通量和通用函数 [J]. 气象学报,1991, 49(1):46-53.]

[12] Ma Y, Zhong L, Su Z, et al. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Ehanced thematic mapper data over the central Tibetan plateau area[J]. Journal of Geophysics Research, 2006, 111, D10305, doi:10.1029/2005JD006742.

[13] Berk A, Bernstein L S, Robertson D C. MODTRAN: A Moderate Resolution Model for LOTRAN 7, GL-TR-89-0122 [M].1989.

[14] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48:119-126.

[15] Mason P. The formation of areally averaged roughness lengths [J]. Quarterly Journal of the Royal Meteorological Society,1988, 114: 399-420.

[16] Ma Y, Tsukamoto O, Ishikawa H, et al. Determination of Regional land surface heat flux densities over heterogeneous landscape of HEIFE integrating satellite remote sensing with field observations[J]. Journal Meteorological Society of Japan, 2002, 80(3): 485-501.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[14] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[15] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
阅读次数
全文


摘要