地球科学进展 ›› 2000, Vol. 15 ›› Issue (2): 178 -183. doi: 10.11867/j.issn.1001-8166.2000.02.0178

综述与评述 上一篇    下一篇

混沌理论与大气边界层湍流研究
李 昕   
  1. 中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029
  • 收稿日期:1999-07-27 修回日期:1999-10-13 出版日期:2000-04-01
  • 通讯作者: 李昕,女,1968年12月出生于北京,助研,主要从事大气物理与大气湍流研究。
  • 基金资助:

    中国科学院“九五”重点项目“大气污染预测的理论和方法研究”(编号:KZ951-A1-403-02)资助。

CHAOS THEORY AND ITS APPLICATIONS TO ATMOSPHERIC BOUNDARY LAYER TURBULENCE RESEARCH

LI Xin   

  1. LAPC,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:1999-07-27 Revised:1999-10-13 Online:2000-04-01 Published:2000-04-01

简述了混沌理论的发展及其判别方法,阐明混沌理论的建立给大气科学中的湍流研究带来了新的启示;介绍了近期混沌理论在大气边界层湍流研究中的应用结果,这些结果表明大气边界层湍流具有很强的混沌特性,且存在低维奇怪吸引子。最后提出了有待进一步研究的问题。

This paper mainly consists of four sections,its purpose is to give a brief overview of chaos theory and to discuss its applications to the atmospheric boundary layer turbulence in detail.We usually cite the original references and more recent review papers so that interested readers can easily find more detail concerning particular fields of study.Chaos theory and method for characterizing chaos are presented in section 2,including phase space reconstruction method,definition and calculation of fractal dimension and Lyapunov exponents.Applications of chaos theory to the atmospheric boundary layer turulence are discussed in section 3,recent research work of author is introduced:a large amount of observed data obtained by the sonic anemometer from two different field experiments at different places of China is analyzed, which is shown that all time series of atmospheric turbulence fluctuation exhibit chaotic behavior,with strange attractors whose (correlation)dimensions range from 3 to 7,all the maximum Lyapunov exponents are great than zero,as well as,it is first put forward that turbulence kinetic energy derived from turbulence wind speed as a variation is made use of calculating fractal dimension and the maximum lyapnunov exponent to characterize chaos.Finally,some suggestions for further work are given
in section 4.

中图分类号: 

〔1〕Campbell D K. Choas/XAOC:Soviet-American Perspectives on Nonlinear Science〔M〕. The American Institute of Physics,New York:Springer Verlag,1990.500.
〔2〕郝柏林.分叉混沌、奇怪吸引子、湍流及其它〔J〕.物理学进展,1983,3(3):329~416.
〔3〕黄永念.分叉、分形、混沌和湍流之间的关系〔A〕.见:中国科学院力学研究所编.现代流体力学进展〔C〕.北京:科学出版社,1991.7~15.
〔4〕胡非.湍流、间歇性与大气边界层〔M〕.北京:科学出版社,1995.12~17.
〔5〕Hadamard J. Les surfaces a courbures opposees et leurs lignes geodesiques〔J〕. J Math Pures,1898, Appl,4:27~73.
〔6〕Poincare H. Science et Methode.Ernest Flammarion〔M〕.(English translation is Science and Method. Dover Publications,1952.288).Dover:Dover Pub,1908.
〔7〕Lorenz E N. Deterministic nonperiodic flow〔J〕.J Atmos Sci,1963, 20:130.
〔8〕Li T-Y, Yorke J A. Period three implies chaos〔J〕.Am Math Mon,1975,82:985~992.
〔9〕Ruelle D, Takens F.On the nature of turbulence〔J〕.Commun Math Phys,1971,20:167.
〔10〕Ruelle D. Deterministic Chaos: the science and fiction〔J〕.Proc R Soc London, 1990, A 427:241.
〔11〕Hao B-L. Choas〔M〕. River Edge:World Scientific Pub CO,1984.576p.
〔12〕Tsonis A A, Elsner J B. Chaos, strange attractors and weather〔J〕.Bull Amer Meteor Soc,1989,70:14~23.
〔13〕Marek M, Schreiber I. Chaotic Behavior of Deterministic Dissipative Systems〔M〕.Cambridge:Cambridge University Press,1991.365p.
〔14〕Zeng X, Pielke R A, Eykholt R. Choas theory and its applications to the atmosphere〔J〕. Bulletin of the American Meteorological Society, 1993,74(4): 631~644.
〔15〕Berge P Y Pomeau, Vidal C. Order within Chaos〔M〕. New York:John Wiley and Sons Inc,1984.329p.
〔16〕Mandelbrot B B. The Fractal Geometry of Nature〔M〕. San Francisco:Freeman,1983.
〔17〕Falconer K. Fractal Geometery: Mathematical Foundation and Applications〔M〕. New York:Wiley,1990.
〔18〕Grassberger P, Procaccia I. Characterization of strange attrators〔J〕.Phys Rev.Lett, 1983,50:346~349.
〔19〕Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors〔J〕. Rev Mod Phys,1985,57:617~656.
〔20〕Guckenheimer J, Holmes P. Nonlinear Oscillations,Dynamical Systems and Bifurcations of Vector Fields〔M〕.New York:Springer-Verlag,1983.453pp.
〔21〕Kolmogorov A N. A new metric invariant of transient dynamical systems and automorphisms in Lebesguepaces〔J〕.Dokl Akad Nauk SSSR,1958,119:861~864(Sov Phys Dokl,112:426~429).
〔22〕Wolf A,Swift J. Progress in computing Lyapunov exponents from experimental data〔A〕. In:Holton C W, Reichl L E,eds. Statistical Physics and Chaos in Fusion Plasmas〔C〕.New York: Wiley Pub,1984.
〔23〕杨培才.湍流运动与非线性科学理论〔J〕.力学进展,1994,27(2):205~219.
〔24〕Packard N H. Geometry from a time series〔J〕. Phy Rev Lett,1980, 45: 712.
〔25〕Takens F. Detecting strange attractor in turbulence〔J〕.Le ture Notes in Math,1981, 898: 336.
〔26〕方兆本.走出混沌〔M〕.长沙:湖南教育出版社,1995.71~81.
〔27〕刘秉正.非线性动力学与混沌基础〔M〕.长春:东北师范大学出版社,1994.70~90.
〔28〕Theiler J, Eubank S. Don' t bleach chaotic data〔J〕. Chaos,1993, 3: 771.
〔29〕Ababrbanel H D I, Kennel M B. Local false nearest neigh-bors and dynamical dimensions from observed chaotic data〔J〕. Phys Rev, 1993,E47: 3 057.
〔30〕Kantz H. A robust method to estimate the maximal lyapunov exponent of a time series〔J〕. Phys Rev,1994, A185: 77.
〔31〕Farmer J D. Predicting chaotic time series〔J〕. Phys Rev Lett,1987,59:845.
〔32〕Orcutt K F, Arritt R W. Comparative fractal dimension for daytime and nocturnal surface layer turbulence〔A〕. 11th Symp Boundayr Layer & Turb〔C〕. Charlotte: NC Amer Meterol Soc, 1995.
〔33〕Ababrbanel H D I. Analysis of Observed Chaotic Data〔M〕.New York: Springer,1996.108~115.
〔34〕Williams G P. Chaos Theory Tamed〔M〕. Great Britain:Taylor &Francis,1997.
〔35〕Froyland J. Introduction to Chaos and Coherence〔M〕. New York: Institute of Physics Publishing, 1992.
〔36〕Buzug T, Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavivour of strange attractors〔J〕. Phys Rev,1991, A 45:7 073.
〔37〕Stanisic M M. The mathematical theory of turbulence〔M〕.Springer: The American Institute of Physics,1985.500pp.
〔38〕Ruelle D. Chance and Chaos〔M〕. Princeton: Princeton University Press,1991.
〔39〕Frisch U. Turbulence〔M〕. Cambridge: Cambridge Uni Press,1995.
〔40〕是勋刚.湍流〔M〕.天津:天津大学出版社,1994.
〔41〕Kantz H, Schreiber T. Nonlinear Time Series Analysis〔M〕.Cambridge: Cambridge Unversity Press,1997.
〔42〕杨培才,刘锦丽,杨硕文.低层大气运动的混沌吸引子〔J〕.大气科学,1990,14(3): 335~341.
〔43〕郭光.大气边界层湍流的混沌特性〔J〕.南京气象学院学报,1992,15(4):476~484.
〔44〕林振山.非线性力学与大气科学〔M〕.南京:南京大学出版社,1993.
〔45〕高志球,王介民.HEIFE绿洲和沙漠地区大气边界层湍流混沌特性研究〔J〕.高原气象,1998,17(4):398~402.
〔46〕Jaramillo P G, Puente C E. Strange attractor in atmosphere boundary-layer turbulence〔J〕. Boundary-Layer Meteorol,1993, 64:175.
〔47〕Rudolfo. W, Peter, Gerard,et al. Search for finite dimensional attractors in atmospheric turbulence〔J〕.Boundary-Layer Meteorology,1995, 73:1~14.
〔48〕Theiler J. Efficient algorithm for estimating the correlation dimension from a set of discrete points〔J〕. Phys Rev,1987,A36:4456.
〔49〕Wolf A,Swift J B, Swinney HL,et al. Determining lyapunov exponents from a time series〔J〕. Physica,1988, 16D(3):285~317.
〔50〕Lorenz E N. Dimension of weather and attractors〔J〕.Nature,1991,353:241~244.
〔51〕Kaimal J C, Finnigan J J. Atmospheric Boundary Layer Flows〔M〕. New York: Oxford Uni Press, 1994.
〔52〕Panofsky H A, Dutton J A. Atmospheric Turbulence〔M〕.New York:John Wiley and Sons,1984.
〔53〕Sorbjan Z. Structure of the atmospheric boundary layer〔M〕.New Jersey: Prentice Hall,1989.

[1] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[2] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[3] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[4] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[5] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[6] 吴立新,陈朝晖. 物理海洋观测研究的进展与挑战[J]. 地球科学进展, 2013, 28(5): 542-551.
[7] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[8] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
[9] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[10] 张强,王胜,张杰,王润元,刘宏宜,李岩瑛. 干旱区陆面过程和大气边界层研究进展[J]. 地球科学进展, 2009, 24(11): 1185-1194.
[11] 徐自为,刘绍民,宫丽娟,王介民,李小文. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[12] 王介民,王维真,奥银焕,孙方林,王树果. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8): 791-797.
[13] 程雪玲,胡非,赵松年,姜金华. 格子玻尔兹曼方法及其在大气湍流研究中的应用[J]. 地球科学进展, 2007, 22(3): 249-260.
[14] 仲雷,马耀明,苏中波,刘新,李茂善,马伟强,王永杰. 珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展, 2006, 21(12): 1293-1303.
[15] 魏皓,赵亮,刘广山,江文胜. 浅海底边界动力过程与物质交换研究[J]. 地球科学进展, 2006, 21(11): 1180-1184.
阅读次数
全文


摘要