地球科学进展 ›› 2012, Vol. 27 ›› Issue (4): 386 -397. doi: 10.11867/j.issn.1001-8166.2012.04.0386

综述与评述 上一篇    下一篇

宇宙成因核素在地质年代学研究中的新进展
刘彧 1,2,王世杰 1,3*,刘秀明 1,3   
  1. 1.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550002;2.中国科学院研究生院,北京 100049;3.中国科学院普定喀斯特生态系统观测研究站,贵州 普定 562100
  • 收稿日期:2011-10-10 修回日期:2012-02-07 出版日期:2012-04-10
  • 通讯作者: 王世杰(1966-),男,浙江台州人,研究员,主要从事环境地球化学研究. E-mail:wangshijie@vip.skleg.cn
  • 基金资助:

    中国科学院战略性先导科技专项重大课题“典型石漠化地区植被恢复和增汇技术的试验示范”(编号:XDA05070400);中国科学院知识创新工程方向性项目“岩溶山地土壤与植被关联退化过程及其调控对策研究”(编号:KZCX2-YW-306);国家重点基础研究发展计划项目“西南喀斯特山地石漠化与适应性生态系统调控”(编号:2006CB403200)资助.

New Advance of Cosmogenic Nuclides Dating in Geochronology Research

Liu Yu 1,2, Wang Shijie 1,3, Liu Xiuming 1,3   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550002, China; 2. Graduate University of Chinese Academy of Sciences, Beijing100049, China;3. Karst Ecosystem Observation and Research Station, Chinese Academy of Sciences, Puding562100, China
  • Received:2011-10-10 Revised:2012-02-07 Online:2012-04-10 Published:2012-04-10

根据地表暴露岩石或埋藏物中宇宙成因核素浓度可计算样品的暴露年龄或埋藏年龄,从而估算出研究区域的侵蚀速率和抬升速率等重要地质信息,该方法现已成为晚新生代地质和地貌变化研究的重要手段。概述了近5年来国内外宇宙成因核素在地质年代学研究中的最新进展,主要包括以下几个方面:①10Be研究进展,26Al/10Be双核素测年计算模型的改进和完善,以及21Ne的加入对26Al-10Be测年方法的拓展;②宇宙成因36Cl在碳酸盐岩中的研究和应用进展;③53Mn、41Ca等新核素的研究和应用;④宇宙成因核素测年技术在国内的应用进展。最后,分析了宇宙成因核素测年存在的主要问题及下一步重点研究方向。 

Based on the concentration of cosmogenic nuclides in exposed rocks or burial materials near the surface, which can calculate its exposure age or burial age, it is possible to evaluate  the important geological information of erosion rate or uplift rate in study area. Now, this method has become an important approach on geological and landscape evolution of Late Cenozoic era. We focus our attention on the following aspects: ①The newest researches on10Be, advances and modifications on calculation model of 26Al/ 10Be pairs, and progresses of 26Al-10Be-21Ne dating method; ②Study and application progresses of 36Cl in carbonate rocks; ③Researches and applications of new cosmogenic nuclides about 53Mn,41Ca etc.; ④Applications of cosmogenic nuclides geochronology in domestic studies. The major problems of cosmogenic nuclides dating method and the next research direction are analyzed at last.

中图分类号: 

[1]Bauer C A. Production of helium in meteorites by cosmic radiation[J]. Physical Review, 1947, 72(4): 354-355.
[2]Rood D H, Burbank D W, Finkel R C. Chronology of glaciations in the Sierra Nevada, California, from 10Be surface exposure dating[J]. Quaternary Science Reviews, 2011, 30(5/6): 646-661.
[3]Granger D E, Smith A L. Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be[J]. Nuclear Instruments and Methods in Physics Research Section B, 2000, 172(1/4): 822-826.
[4]Granger D E, Kirchner J W, Finkel R C, et al. Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium[J]. Geology, 1997, 25(2): 107-110.
[5] Bierman P, Steig E J. Estimating rates of denudation using cosmogenic isotope abundances in sediment[J]. Earth and Processes and Landforms, 1996, 21(2): 125-139.
[6]Jackson J, Ritz J F, Siame L, et al. Fault growth and landscape development rates in Otago, New Zealand, using in situ cosmogenic 10Be[J]. Earth and Planetary Science Letters, 2002, 195(3/4): 185-193.
[7]Nissen E, Walker R T, Bayasgalan A, et al. The late Quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic 10Be and luminescence dating[J]. Earth and Planetary Science Letters, 2009, 286(3/4): 467-478.
[8]Small E E, Anderson R S, Hancock G S, et al. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope[J]. Geomorphology, 1999, 27(1/2): 131-150.
[9]Zhang Ke, Cai Jianbo. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia Gorge Mouth, northeast margin of Tibetan Plateau and its expression of neotectonic movement in that area[J]. Quaternary Science,2006, 26(1): 85-91.[张珂,蔡剑波. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J]. 第四纪研究, 2006, 26(1): 85-91.] 
[10]Kong P, Na C G, Fink D, et al. Cosmogenic 10Be inferred lake-level changes in Sumxi Co Basin, Western Tibet[J]. Journal of Asian Earth Sciences, 2007, 29(5/6): 698-703.
[11]Stock G M, Anderson R S, Finkel R C. Rates of erosion and topographic evolution of the Sierra Nevada, California, inferred from cosmogenic 26Al and 10Be concentrations[J]. Earth and Processes and Landforms, 2005, 30(8): 985-1 006.
[12]Miller G H, Briner J P, Lifton N A, et al. Limited ice-sheet erosion and complex exposure histories derived from in situ cosmogenic 10Be, 26Al, and 14C on Baffin Island, Arctic Canada[J]. Quaternary Geochronology, 2006, 1(1): 74-85.
[13]Nishiizumi K, Imamura M, Caffee M, et al. Absolute calibration of 10Be AMS standards[J]. Nuclear Instruments and Methods in Physics Research Section B, 2007, 258(2): 403-413.
[14]Chmeleff J, Blanckenburg F, Kossert K, et al. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research Section B, 2010, 268(2): 192-199.
[15]Korschinek G, Bergmaier A, Faestermann T, et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research Section B, 2010, 268(2): 187-191.
[16]Blard P, Bourles D, Pik R, et al. In situ cosmogenic 10Be in olivines and pyroxenes[J]. Quaternary Geochronology, 2008, 3(3): 196-205.
[17]Leya I, Lange H J, Neumann S, et al. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic ray particles[J]. Meteoritics & Planetary Science, 2000, 35(2): 259-286.
[18]Merchel S, Benedetti L, Bourlès D L, et al. A multi-radionuclide approach for in situ produced terrestrial cosmogenic nuclides: 10Be, 26Al, 36Cl and 41Ca from carbonate rocks[J]. Nuclear Instruments and Methods in Physics Research Section B, 2009, 268(7/8): 1 179-1 184.
[19]Braucher R, Benedetti L, Bourles D, et al. Use of in situ-produced Be in carbonate-rich environments: A first attempt[J]. Geochimica et Cosmochimica Acta, 2005, 69(6): 1 473-1 478.
[20]Alfimov V, Ivy-Ochs S. How well do we understand production of 36Cl in limestone and dolomite? [J]. Quaternary Geochronology, 2009, 4(6): 462-474.[21]Merchel S, Braucher R, Benedetti L, et al. Dating carbonate rocks with in-situ produced cosmogenic 10Be: Why it often fails[J]. Quaternary Geochronology, 2008, 3(4): 299-307.
[22]Niemi N A, Oskin M, Douglas W B, et al. Effects of bedrock landslides on cosmogenically determined erosion rates[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 480-498.
[23]Muzikar P. Cosmogenic nuclide concentrations in episodically eroding surfaces: Theoretical results[J]. Geomorphology, 2008, 97(3/4): 407-413.
[24]Siame L, Bellier O, Braucher R, et al. Local erosion rates versus active tectonics: Cosmic ray exposure modeling in Provence (south-east France)[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 345-364.
[25]Braucher R, Castillo P D, Siame L, et al. Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases[J]. Quaternary Geochronology, 2009, 4(1): 56-67. 
[26]Muzikar P. Inferring exposure ages and erosion rates from cosmogenic nuclides: A probabilistic formulation[J]. Quaternary Geochronology, 2009, 4(1): 124-129.
[27]Altmaier M, Herpers U, Georg D, et al. Glaciation history of Queen Maud Land (Antarctica) reconstructed from in-situ produced cosmogenic 10Be, 26Al and 21Ne[J]. Polar Science, 2010, 4(1): 42-61.
[28]Kong P, Huang F X, Liu X F, et al. Late Miocene ice sheet elevation in the Grove Mountains, East Antarctica, inferred from cosmogenic 21Ne-10Be-26Al[J]. Global and Planetary Change, 2010, 72(1/2): 50-54.
[29]Balco G, Shuster D L. 26Al-10Be-21Ne burial dating[J]. Earth and Planetary Science Letters, 2009, 286(3/4): 570-575.
[30]Stone J O, Allan G L, Fifield L K, et al. Cosmogenic chlorine-36 from calcium spallation[J]. Geochimica et Cosmochimica Acta, 1996, 60(4): 679-692.[31]Evans J M, Stone J O, Fifield L K, et al. Cosmogenic chlorine-36 production in K-feldspar[J]. Nuclear Instruments and Methods in Physics Research Section B, 1997, 123(1/4): 334-340.
[32]Licciardi J, Denoncourt C, Finkel R. Cosmogenic 36Cl production rates from Ca spallation in Iceland[J]. Earth and Planetary Science Letter, 2008, 267(1/2): 365-377.
[33]Palumbo L, Benedetti L, Bourlès D, et al. Slip history of the Magnola fault (Apennines, Central Italy) from 36Cl surface exposure dating: Evidence for strong earthquakes over the Holocene[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 163-176.
[34]Matsushi Y, Sasa K, Takahashi T, et al. Denudation rates of carbonate pinnacles in Japanese karst areas: Estimates from cosmogenic 36Cl in calcite[J]. Nuclear Instruments and Methods in Physics Research Section B, 2010, 268(7/8): 1 205-1 208.
[35]Vincent P J, Wilson P, Lord T C, et al. Cosmogenic isotope (36Cl) surface exposure dating of the Norber erratics, Yorkshire Dales: Further constraints on the timing of the LGM deglaciation in Britain[J]. Proceedings of the Geologists' Association, 2010, 121(1): 24-31.
[36]Akcar N, Ivy-Ochs S, Alfimov V, et al. First results on determination of cosmogenic 36Cl in limestone from the Yenicekale Complex in the Hittite capital of Hattusha (Turkey) [J]. Quaternary Geochronology, 2009, 4(6): 533-540.
[37]Kober F, Ivyochs S, Leya I, et al. In situ cosmogenic 10Be and 21Ne in sanidine and in situ cosmogenic 3He in Fe-Ti-oxide minerals[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 404-418.
[38]Balco G, Shuster D L. Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces[J]. Earth and Planetary Science Letters, 2009, 281(1/2): 48-58.
[39]Goethals M M, Hetzel R, Niedermann S, et al. An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz[J]. Earth and Planetary Science Letters, 2009, 284(1/2): 187-198.
[40]Farley K A, Libarkin J, Mukhopadhyay S, et al. Cosmogenic and nucleogenic 3He in apatite, titanite, and zircon[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 451-461.
[41]Goehring B M, Kurz M D, Balco G, et al. A reevaluation of in situ cosmogenic 3He production rates[J]. Quaternary Geochronology, 2010, 5(4): 410-418.
[42]Kutschera W, Ahmad I, Paul M. Half-life determinations of  41Ca and some other radio isotopes[J]. Radiocarbon, 1992, 34(3): 436-446.
[43]Schaefer J, Faestermann T, Herzog G, et al. Terrestrial manganese-53—A new monitor of Earth surface processes[J]. Earth and Planetary Science Letters, 2006, 251(3/4): 334-345.
[44]Dunai T J. Cosmogenic Nuclides Principles, Concepts and Applications in the Earth Surface Sciences[M]. New York: Cambridge University Press, 2010.
[45]Ziegler J F, Biersack J P, Ziegler M D. SRIM Stopping Ranges of Ions in Matter [M]. Morrisville: Lulu Press, 2008.
[46]Dunai T J, Stuart F M, Pik R, et al. Production of 3He in crustal rocks by cosmogenic thermal neutrons[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 228-236.
[47]Licciardi J M, Kurz M D, Clark P U, et al. Calibration of cosmogenic 3He production rates from Holocene lava flows in Oregon, USA, and effects of the Earth′s magnetic field[J]. Earth and Planetary Science Letters,1999, 172(3): 261-271.
[48]Evenstar L A, Hartley A J, Stuart F M, et al. Multiphase development of the Atacama Planation Surface recorded by cosmogenic He-3 exposure ages: Implications for uplift and Cenozoic climate change in western South America[J]. Geology, 2009, 37(1): 27-30.
[49]Kong P, Ding L, Lai Q Z, et al. Cosmogenic 21Ne concentrations and exposure ages of summit bedrocks in the Grove Mountains, Antarctica[J]. Science in China (Series D), 2010, 53(4): 518-521.
[50]Goethals M M, Niedermann S, Hetzel R, et al. Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California[J]. Geomorphology, 2009, 103(3): 401-413.
[51]Gillen D, Honda M, Chivas A R, et al. Cosmogenic 21Ne exposure dating of young basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia[J]. Quaternary Geochronology, 2010, 5(1): 1-9.
[52]Nishiizumi K, Caffee M W, DePaolo D J. Preparation of 41Ca AMS standards[J]. Nuclear Instruments and Methods in Physics Research Section B, 2000, 172(1/4): 399-403.
[53]Audi G, Bersillon O, Blachot J, et al. The NUBASE evaluation of nuclear and decay properties[J]. Nuclear Physics A, 2003, doi:10.1016/j.nuclphysa.2003.11.001.
[54]Phillips F M, Stone W D, Fabryka-Martin J T. An improved approach to calculating low-energy cosmic ray neutron fluxes near the land/atmosphere interface[J]. Chemical Geology, 2001, 175(3/4): 689-701.
[55]Stone J O. Terrestrial Chlorine-36 Production from Spallation of Iron[C]The 10th International Conference on Accelerator Mass Spectrometry, Berkeley C A, 2005.
[56]Honda M, Imamura M. Half-life of 53Mn[J]. Physical Review, 1971, C4:1 182-1 188.
[57]Heisinger B, Lal D, Jull A J, et al. Production of selected cosmogenic radionuclides by muons: 1. Fast muons[J]. Earth and Planetary Science Letters, 2002, 200(3/4): 345-355.
[58]Gladkis L G, Fifield L K, Morton C R, et al. Manganese-53: Development of the AMS technique for exposure-age dating applications[J]. Nuclear Instruments and Methods in Physics Research Section B, 2007, 259(1): 236-240.
[59]Kong P, Fink D, Na C G, et al. Dip-slip rate determined by cosmogenic surface dating on a Holocene scarp of the Daju fault, Yunnan, China[J]. Tectonophysics, 2010, 493(1/2): 106-112.
[60]Gu Zhaoyan, Xu Bing, Lü Yanwu, et al. The tectonic landform evolution of Nu River Canyon: The preliminary results from terrace TCN dating[J]. Quaternary Science, 2006, 26(2): 293-294.[顾兆炎, 许冰, 吕延武, 等. 怒江峡谷构造地貌的演化:阶地宇宙成因核素定年的初步结果[J]. 第四纪研究, 2006, 26(2): 293-294.]
[61]Kong P, Fink D, Na C G, et al. Late Quaternary glaciation of the Tianshan, Central Asia, using cosmogenic 10Be surface exposure dating[J]. Quaternary Research, 2009, 72(2): 229-233.
[62]Zhou Shangzhe, Xu Liubing, Colgan P M, et al. Cosmogenic nuclide 10Be dating of Guxiang Ice Age and Baiyu Ice Age[J].Chinese Science Bulletin, 2007, 52(8):945-950.[周尚哲, 许刘兵, Colgan P M,等.古乡冰期和白玉冰期的宇宙成因核素10Be定年[J].科学通报, 2007, 52(8): 945-950.]
[63]Chen Yixin, Li Yingkui, Zhang Mei, et al. Terrestrial cosmogenic nuclide 10Be exposure ages of the samples from Wangkun Till in the Kunlun Pass[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 101-109.[陈艺鑫, 李英奎, 张梅, 等.昆仑山垭口地区“望昆冰期”冰碛宇宙成因核素10Be测年[J]. 冰川冻土, 2011, 33(1): 101-109.]
[64]Zheng Hongbo, Huang Xiangtong, Xiang Fang, et al. Cosmogenic nuclides 10Be:New approach to estimate erosion rate of Yangtze catchment[J]. Journal of Tongji University (Natural Science), 2005, 33(9): 1 160-1 165.[郑洪波, 黄湘通, 向芳, 等. 宇宙成因核素10Be:估算长江流域侵蚀速率的新方法[J]. 同济大学学报:自然科学版, 2005, 33(9): 1 160-1 165.]
[65]Xu Liubing, Zhou Shangzhe. Quantifying erosion rates in the Southeastern Tibetan Plateau since the last interglacial using in-situ cosmogenic radionuclide 10Be[J]. Acta Geologica Sinica, 2009, 83(4): 487-495.[许刘兵, 周尚哲. 基于宇宙成因核素10Be的青藏高原东南部地区末次间冰期以来地表岩石剥蚀速率研究[J].地质学报, 2009, 83(4): 487-495.]
[66]Kong P, Na C G, Fink D, et al. Erosion in northwest Tibet from in-situ-produced cosmogenic Be-10 and Al-26 in bedrock[J]. Earth Surface Processes and Landforms, 2007, 32(1): 116-125.
[67]Kong P, Granger D, Wu F Y, et al. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 2009, 278(1/2): 131-141.
[68]Wang Yajun, Kong Ping, Na Chunguang, et al. Exposure ages of high lacustrine shorelines around the Cuochuolong Lake in south Tibet and related paleoprecipitation calculations[J]. Quaternary Sciences, 2008, 28(2): 280-287. [王亚军,孔屏,那春光,等. 藏南错戳龙高湖面阶地的形成时间及相应的古降水量的计算[J].第四纪研究, 2008, 28(2): 280-287.]
[69]Lü Y W, Gu Z Y, Aldahan A, et al. 10Be in quartz gravel from the Gobi Desert and evolutionary history of alluvial sedimentation in the Ejina Basin, Inner Mongolia, China[J]. Chinese Science Bulletin, 2010, 55(33): 3 802-3 809.
[70]Shen G J, Gao X, Gao B, et al. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating[J]. Nature, 2009, 458(7 235):  198-200.
[71]Kong P, Fabel D, Brown R, et al. Cosmic-ray exposure age of Martian meteorite GRV 99027[J]. Science in China(Series D), 2007, 50(10): 1 521-1 524.
[72]Gu Zhaoyan, Guo Zhengtang, Lal D, et al. 10Be concentration relation to chemical compositions of Chinese loess and red clay as a potential dating method[J]. Quaternary Sciences, 2006, 26(2): 244-249.[顾兆炎, 郭正堂, Lal D, 等. 黄土和红粘土中宇宙成因核素定年的潜力:10Be浓度与化学成分的关系[J].第四纪研究, 2006, 26(2): 244-249.]
[73]Masarik J, Frank M, Schafer J M, et al. Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65(17): 2 995-3 003.
[74]Stone J O. Air pressure and cosmogenic isotope production[J].Journal of Geophysical Research, 2000, 105(10): 23 753-23 759.
[75]Chen Wenji, Ji Fengju, Wang Fei. Young Geological System Dating Methods (continued)—New Method, New Progress[M]. Beijing: Seismological Press, 1999. [陈文寄, 计凤桔, 王非.年轻地质体系的年代测定(续)——新方法、新进展[M].北京: 地震出版社,1999.]
[76]Cerling T E, Craig H. Geomorphology and in-situ cosmogenic isotopes[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 273-317.
[77]Granger D E, Muzikar P F. Dating sediment burial with in-situ produced cosmogenic nuclides: Theory, techniques, and limitations[J]. Earth and Planetary Science Letters, 2001, 188(1/2): 269-281.
[78]Phillips F M, Leavy B B, Jannik N O, et al. The accumulation of cosmogenic Chlorine-36 in Rocks: A method for surface exposure dating[J]. Science, 1986, 231(4 733): 41-43.
[79]Peng Zicheng. New technique of the dating Quaternary materials: The development of the thermal ionization mass spectrometry—U series method[J]. Quaternary Sciences, 1997, (3): 258-264.[彭子成. 第四纪年龄测定的新技术——热电离质谱铀系法的发展近况[J].第四纪研究, 1997, (3): 258-264.]
[80]Chen Shue. Studies on OSL Dating of Holocene Loess in Weihe River Basin[D]. Xi′an: Shaanxi Normal University, 2003. [陈淑娥. 渭河流域全新世黄土光释光测年研究[D].西安: 陕西师范大学, 2003.]
[81]Chen Wenji, Peng Gui. Young Geological System Dating Methods[M]. Beijing: Seismological Press, 1991.[陈文寄, 彭贵.年轻地质体系的年代测定[M].北京: 地震出版社,1991.]

[1] 黄飞鹏, 任俊杰, 吕延武, 赵俊香. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 2018, 33(3): 321-332.
[2] 胡凯, 方小敏, 赵志军. 宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
[3] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[4] 王 毅,金之钧. 沉积盆地中恢复地层剥蚀量的新方法[J]. 地球科学进展, 1999, 14(5): 475-481.
阅读次数
全文


摘要