地球科学进展 ›› 2008, Vol. 23 ›› Issue (1): 8 -16. doi: 10.11867/j.issn.1001-8166.2008.01.0008

综述与评述 上一篇    下一篇

海洋钙离子非保守行为及海洋钙问题
曹知勉,戴民汉   
  1. 厦门大学近海海洋环境科学国家重点实验室,福建 厦门 361005
  • 收稿日期:2007-07-16 修回日期:2007-11-05 出版日期:2008-01-15
  • 通讯作者: 曹知勉 E-mail:zmcao@xmu.edu.cn
  • 基金资助:

    国家自然科学基金创新群体科学基金项目“海洋生物地球化学过程与机制”(编号: 40521003)资助.

Non-Conservative Calcium in the Sea and Oceanic Calcium Problems

Cao Zhimian,Dai Minhan   

  1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005,China
  • Received:2007-07-16 Revised:2007-11-05 Online:2008-01-15 Published:2008-01-10

钙离子是海洋11种常量离子之一,与钠、钾等离子的保守性不同,钙离子在海洋中的分布表现出微小但系统的变化。钙离子的变化往往与海洋碳酸钙的形成和溶解过程有关,所以,钙离子可直接指示海洋碳酸钙通量(深层海洋碳通量的主要组成部分)。同时,碳酸钙沉淀或溶解又会改变总碱度和溶解无机碳,通过钙离子变化也能间接探讨海洋碳酸盐系统和海洋吸收CO2的能力。介绍了以碳酸钙溶解形成超额钙为主的海洋钙离子多种非保守行为及其控制过程,讨论这些过程对海水组成和海洋碳酸盐系统的影响,探讨未来海洋酸化条件下钙离子可能的变化及其潜在的效应,最后展望在南海开展钙离子精细行为的研究意义。

Dissolved calcium ion (Ca2+) is one of the eleven major ions in the ocean. Unlike the conservative ones, such as sodium ion (Na+) and potassium ion (K+), Ca2+ has small but systematic variations in the ocean, likely related to the formation and dissolution of calcium carbonate (CaCO3) particles. High precision measurements of Ca2+ can thus provide insights of CaCO3 cycling and fluxes. Moreover, due to the fact that CaCO3 precipitation and/or dissolution also affect the carbonate system, we can potentially link the Ca2+ variation to discuss the oceanic sink of atmospheric CO2. This paper attempts to summarize the reported excess Ca and other non-conservative calcium behaviors and to discuss their controlling processes and impacts on the seawater composition and the carbonate system. The potential changes and the role of Ca2+ in the context of ocean acidification are also touched upon.

中图分类号: 

[1] Wilson T R S. The major constituents of seawater[C]Riley J PSkirrow Geds. Chemical Oceanography2nd. London: Academic Press19751365-413.

[2] Pilson M E Q. An Introduction to the Chemistry of the Sea[M]. Upper Saddle RiverNew Jersey: Prentice-HallInc1998:58-134.

[3] Dittmar W. Report on researches into the composition of ocean water collected by H.M.S. Challenger during the years 1873-1876[C]Murray Jed. Voyage of H.M.S. ChallengerVol 2. London: H.M.  Stationery Office18842:51.

[4] Culkin F. The major constituents of seawater[C]Riley J PSkirrow Geds. Chemical Oceanography1st. London: Academic Press1965:121-161.

[5] Tsunogai SNishimura MNakaya S. Complexometric titration of calcium in the presence of larger amounts of magnesium [J]. Talanta196815: 385-390.

[6] Lebel JPoisson A. Potentiometric determination of calcium and magnesium in seawater [J]. Marine Chemistry19764: 321-332.

[7] Shiller A MGieskes J M. Processes affecting the oceanic distributions of dissolved calcium and alkalinity [J]. Journal of Geophysical Research198085: 2 719-2 727.

[8] Kanamori SIkegami H. Computer-processed potentiometric titration for the determination of calcium and magnesium in sea water [J]. Journal of the Oceanographical Society of Japan198036: 177-184.

[9] Olson E JChen C T A. Interference in the determination of calcium in seawater [J]. Limnology and Oceanography1982272: 375-380.

[10] Xie ShinanJi HongWu Aiqinet al. Potentiometric titration of calcium in seawater [J].Chinese Journal of Oceanology and Limnology1997151: 32-35.

[11] Brewer P GGeorge T F WBacon M Pet al. An oceanic calcium problem? [J]. Earth and Planetary Science Letters197526: 81-87.

[12] Riley J PTongudai M. The major cation/chlorinity ratios in seawater [J]. Chemical Geology19672: 263-269.

[13] Culkin FCox R A. Sodiumpotassiummagnesiumcalcium and strontium in seawater [J]. Deep-Sea Research196613: 789-804.

[14] Tsunogai SNishimura MNakaya S. Calcium and magnesium in sea water and the ratio of calcium to chlorinity as a tracer of water masses [J]. Journal of the Oceanographical Society of Japan196824: 153-159.

[15] Horibe YEndo KTsubota H. Calcium in the South Pacificand its correlation with carbonate alkalinity [J]. Earth and Planetary Science Letters197423: 136-140.

[16] Tsunogai SYamahata HKudo Set al. Calcium in the Pacific Ocean [J]. Deep-Sea Research197320: 717-726.

[17] Redfield A C Ketchum B H Richards F A. The influence of organisms on the composition of seawater[C]Hill M Ned. The SeaVol 2. New York: Interscience1963:26-77.

[18] Kanamori SIkegami H. Calcium-alkalinity relationship in the North Pacific [J]. Journal of the Oceanographical Society of Japan198238: 57-62.

[19] Tsunogai SWatanabe Y. Calcium in the North Pacific water and the effect of organic matter on the calcium-alkalinity relation [J]. Geochemical Journal198115: 95-107.

[20] Chen C T A. Rates of calcium carbonate dissolution and organic carbon decomposition in the North Pacific Ocean [J]. Journal of the Oceanographical Society of Japan199046: 201-210.

[21] Chen C T APytkowicz R MOlson E J. Evaluation of the calcium problem in the South Pacific [J]. Geochemical Journal198216: 1-10.

[22] Wolery T JSleep N H. Hydrothermal circulation and geochemical flux at mid-ocean ridges [J]. Journal of Geology197684: 249-275.

[23] Corliss J BDymond JGordon L Iet al. Submarine thermal springs on the Galapagos Rift [J]. Science1979203: 1 073-1 083.

[24] Meybeck M. Concentrations des eaux fluviales en elements majeurs et apports en solution auc oceans [J]. Revue de Geographie Physique et de Geologique Dynamique197921: 215-246.

[25] Edmond J MMeasures CMcDuff R Eet al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data [J]. Earth and Planetary Science Letters197946: 1-18.

[26] Milliman J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state [J]. Global Biogeochemical Cycles19937: 927-957.

[27] Milliman J DDroxler A W. Calcium carbonate sedimentation in the global ocean: Linkages between the neritic and pelagic environments [J]. Oceanography199583: 92-94.

[28] de Villiers S. Excess dissolved Ca in the deep ocean: A hydrothermal hypothesis [J]. Earth and Planetary Science Letters1998164: 627-641. 

[29] Archer D E. A data-driven model of the global calcite lysocline [J]. Global Biogeochemical Cycles199710: 511-526.

[30] Milliman J DTroy P JBalch W Met al. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? [J]. Deep-Sea Research I199946: 1 653-1 669.

[31] Sherrell R MField M PGao Y. Temporal variability of suspended mass and composition in the northeast Pacific water column: Relationships to sinking flux and lateral advection [J]. Deep-Sea Research II199844: 733-761.

[32] Balch W MKilpatrick K.  Calcification rates in the equatorial Pacific along 140°W [J]. Deep-Sea Research II199643: 971-944. 

[33] Honjo SDymond JCollier Ret al. Export production of particles to the interior of the equatorial Pacific along 140°W [J]. Deep-Sea Research II199542: 831-870.

[34] Balch W MDrapeau D TBowler Bet al. Monsoonal forcing of calcification in the Arabian Sea [J]. Deep-Sea Research II200047: 1 301-1 337.

[35] Martin J HFitzwater S EGordon R Met al. Ironprimary production and carbon-nitrogen fluxes studies during the JGOFS North Atlantic Bloom Experiment [J]. Deep-Sea Research II199340: 115-134.

[36] Boysen M P. Differential export from a two-layered euphotic zone [D]. San Diego: University of California1991.

[37] Bishop J K BCollier R WKettens D Ret al. The chemistrybiology and vertical flux of particulate matter from the upper 1500m of the Panama Basin [J]. Deep-Sea Research A198027: 615-640.

[38] Bishop J K BStepien J CWiebe P H. Particulate matter distributionschemistry and flux in the Panama Basin: Response to environmental forcing [J]. Progress in Oceanography198617: 1-59.

[39] Pond D WHarris R PBrownlee C A. Microinjection technique using a pH-sensitive dye to determine the gut pH of Calanus helgolandicus [J]. Marine Biology1995123: 75-79.

[40] Millero F J. The marine inorganic carbon cycle [J]. Chemical Reviews2007107: 308-341.

[41] Chen C T A. Shelf-vs. dissolution-generated alkalinity above the chemical lysocline[J]. Deep-Sea Research II200249: 5 365-5 375.

[42] Friis KNajjar R GFollows M Jet al. Possible overestimation of shallow-depth calcium carbonate dissolution in the ocean [J]. Global Biogeochemical Cycles200620GB4019doi:10.1029/2006GB002727.

[43] Friis KKortzinger AWallace D W R. The salinity normalization of marine inorganic carbon chemistry data [J]. Geophysical Research Letters2003 302),1 085doi:10.1029/2002GL015898.

[44] Wolf-Gladrow D AZeebe R EKlaas Cet al. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes [J]. Marine Chemistry2007doi:10.1016/j.marchem.2007.01.006.

[45] Feely R ASabine C LLee K et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans [J]. Science2004305: 362-366.

[46] IPCC. Summary for Policymakers[C]Solomon SQin DManning Met aleds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. CambridgeUnited Kingdom and New YorkNYUSA: Cambridge University Press2007:1-18.

[47] Kleypas J ABuddemeier R WArcher Det al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs [J]. Science1999284: 118-120.

[48] Caldeira KWickett M E. Anthropogenic carbon and ocean pH [J]. Nature2003425: 365.

[49] Wolf-Gladrow D ARiebesell UBurkhardt Set al. Direct effects of CO2 concentrations on growth and isotopic composition of marine plankton [J]. Tellus1999512: 461-476.

[50] Orr J CFabry V JAumont Oet al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms [J]. Nature2005437: 681-686.

[51] Kleypas J AFeely R AFabry V Jet al. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research [R]. A report from a workshop sponsored by the NSFNOAA and USGS2006: 24-26.

[52] Gattuso J PFrankignoulle MBourge Iet al. Effect of calcium carbonate saturation of seawater on coral calcification [J].Global and Planetary Change199818: 37-46.

[53] Langdon CTakahashi TSweeney Cet al. Effect of calcium carbonate saturation state on the calcification rate of an experiment coral reef [J]. Global Biogeochemical Cycles200014: 639-654.

[54] Langdon CBroecker W SHammond D Eet al. Effect of elevated CO2 on the community metabolism of an experimental coral reef [J]. Global Biogeochemical Cycles2003171: 1 011.

[55] Langmuir D. Aqueous Environmental Geochemistry [M]. Upper Saddle RiverNew Jersey: Prentice Hall Inc1997:1-600.

[56] Millero F J. Chemical Oceanography [M]. New York: CRC Press Inc1996:76-93. 

[57] Chen C T AWang S LChou W Cet al. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea [J]. Marine Chemistry2006101: 277-305.

[58] Han WuyingWang Junde. Geochemistry of calcium carbonate in the sea at the Pearl River mouth [J]. Geochemica19882: 136-142.[韩舞鹰,王钧德.珠江口海区碳酸钙的海洋化学 [J].地球化学19882136-142.]

[59] Zhang Q M. Mangrove and coral reef coastal resources of China and its development[C]Chen B FWu C YChen J Ceds. Symposium on Coastal Ocean Resources and Environment '99 Proceedings of SCORE '99Guangzhou. Center for Coastal and Atmospheric ResearchThe Hong Kong University of Science and TechnologyHong Kong2000:228-234.

[60] Yang T NWei K YChen L L. Occurrence of coccolithophorids in the northeastern and central South China Sea [J]. Taiwania200348: 29-45.

[61] Zhong Quanwei. Spatial and seasonal changes of coccolithophores communities in the northern South China Sea[D]. Taibei: the Intitue of Marine BiologyNational Sun Yat-sen University2005.[钟权伟. 南海北部海域钙板金藻群落的时空变异[硕士论文D].台北:国立中山大学海洋生物研究所2005.]

[62] Longhurst ASathyendranath SPlatt Tet al. An estimate of global primary production in the ocean from satellite radiometer data [J]. Journal of Plankton Research199517:1 245-1 271.

[63] Zhai W DDai M HCai W Jet al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in springsummer and autumn [J]. Marine Chemistry200596: 87-97.

[1] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[2] 王金平, 张志强, 高峰, 王文娟. 英国海洋科技计划重点布局及对我国的启示[J]. 地球科学进展, 2014, 29(7): 865-873.
[3] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[4] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[5] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[6] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710.
[7] 蔡树群;董丹鹏;王盛安;龙小敏;黄企洲. 南海中尺度波动现象研究进展[J]. 地球科学进展, 2005, 20(2): 180-184.
阅读次数
全文


摘要