地球科学进展 ›› 2007, Vol. 22 ›› Issue (3): 305 -312. doi: 10.11867/j.issn.1001-8166.2007.03.0305

综述与评述 上一篇    下一篇

环境中Al 13的研究进展
刘 璟,赵峰华,刘建权   
  1. 中国矿业大学(北京)煤炭资源与环境研究所,煤炭资源与安全开采国家重点实验室,北京 100083
  • 收稿日期:2006-11-27 修回日期:2007-01-22 出版日期:2007-03-10
  • 通讯作者: 赵峰华(1969-),男,山西和顺人,教授,博士生导师,从事环境地球化学、煤地质学和煤地球化学研究工作.E-mail:zfh@cumtb.edu.cn E-mail:zfh@cumtb.edu.cn

The Research Progress of Al 13 Species in Environment

LIU Jing, ZHAO Feng-hua, LIU Jian-quan   

  1. Institute of Coal Resources & Environment, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
  • Received:2006-11-27 Revised:2007-01-22 Online:2007-03-10 Published:2007-03-10

铝的水解反应及其水解聚合铝形态的研究,特别是具有Keggin结构的Al13聚合形态一直是地球化学、环境科学、形态分析以及生物毒理学等众多领域的研究热点之一。综述了近20年来Al13的分析方法、形成和转化机制、影响因素以及动力学方面研究的进展。

Researches on hydrolytic reaction and polynuclear species of aluminum, especially tridecameric Al13 which arranged in the Keggin structure, are always obtained emphasis in many fields, which include geochemistry, environmental science, speciation analysis, toxicity and so on, the article review research progress of analytical measurements, mechanism of form and transform, influence factors and molecules kinetics during last two decades.

中图分类号: 

[1]Rao G V,Rao K S. Evidence for a hydroxyl-aluminum polymer(Al13) in synaptosomers[J]. The FEBS Journal,1992, 331(1): 49-50.
[2]Poleo A B S. Aluminum polymerization-a mechanism of acute toxicity of aqueous aluminum to fish[J]. Aquatic Toxicology,1995, 31: 347-352.
[3]Parker D R, Kinraide T B, Zelazny L W. On the phytotoxicity of polynuclear hydroxyl-aluminum complexes[J].Soil Science Society of America Journal,1989, 53: 789-796.
[4]Lothenbach B, Furrer G. Immobilization of heavy metals by polynuclear aluminum and montmorillonite compounds[J]. Environmental Science and Technology,1997, 31: 1 452-1 462.
[5]Teagaradeu D L, Kozlowski J F, White J L, et al. Aluminum chlorohydrate Ⅰ Structure studies[J].Journal of Pharmaceutical Sciences,1981, 70:758-761.
[6]Van Bruggen M P B, Donker M, Lekkerkerker H N W, et al. Anomalous stability of aqueous boehmite dispersions induced by hydrolyzed aluminium poly-cations[J].Colloids and Surfaces,1999, 150: 115-128.
[7]Phillips B L, Lee A P, Casey W H. Rates of oxygen exchange between the Al2O8Al28(OH) 56(H2O)18+24 (aq) (Al30) molecule and aqueous solution[J].Geochimica et Cosmochimica Acta,2003, 67: 2 725-2 733. 
[8]Casey W H. Large aqueous aluminum hydroxide molecules [J].Chemical Reviews,2006, 106: 1-16.
[9]Johansson G. On the crystal structures of some basic aluminum sulfates[J].Acta Chemica Scandinavica,1960, 14: 771-773.
[10]Furrer G, Trusch B, Müller C. The formation of polynuclear Al13 under simulated natural conditions[J].Geochimica et Cosmochimica Acta,1992, 56: 3 831-3 838.
[11]Gérard F, Boudot J P, Ranger J. Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters[J]. Applied Geochemistry,2001, 16: 513-529.
[12]Hunter D, Ross D S. Evidence for a phytotoxic hydroxyl-aluminum polymer in organic soil horizons[J]. Science, 1991, 251: 1 056-1 058.
[13]Masion A, Thomas F, Tchoubar D, et al. Chemistry and structure of Al(OH)/organic precipitates. A small-angle X-ray scattering study. 3. depolymerization of the Al13 polycation by organic ligands[J]. Langmuir, 1994, 10: 4 353-4 356.
[14]Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science,2002, 297: 2 245-2 247.
[15]Thompson A R, Kunwar A C, Gutowsky H S, et al. Oxygen-17 and aluminium-27 nuclear magnetic resonance spectroscopic investigations of aluminum(Ⅲ) hydrolysis products[J]. Journal of the Chemical Society, Dalton Transactions,1987, 10: 2 317-2 322.
[16]Akitt J W. Multinuclear studies of aluminum compounds[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,1989, 21: 1-149.
[17]Parker D R, Bertsch P M. Identification and quantification of the “Al13” tridecameric polycation using Ferron[J]. Environmental Science and Technology,1992, 26: 908-914.
[18]Allouche L, Taulelle F. Conversion of Al13 keggin ε into Al30: A reaction controlled by aluminum monomers[J].Inorganic Chemistry Communications,2003,6:1 167-1 170.
[19]Akitt J W, Farthing A. Aluminum-27 nuclear magnetic resonance studies of the hydrolysis of aluminum (Ⅲ), Ⅱ.Gel-permeation chromatography[J].Journal of the Chemical Society, Dalton Transactions,1981, 7: 1 606-1 608.
[20]Nazar L F, Rowsell J J. Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster [Al2O8Al28(OH)56(H2O)18+26] and its δ-keggin moiet [J]. Journal of the American Chemical Society,2000, 122: 3 777-3 778.
[21]Allouche L, G rardin C, Loiseau T, et al. Al30: A giant aluminum polycation[J]. Angewandte Chemie(International edition in English),2000, 39(3):511-514.
[22]Turner R C, Ross G J. Conditions in solution during the formation of gibbsite in dilute Al salt solutions. Effect of Cl concentration and temperature and a proposed mechanism for gibbsite formation[J]. Canadian Journal of Chemistry,1970, 48: 723-729.
[23]Smith R W. Relation among equilibrium and nonequilibrium aqueous species of aluminum hydroxyl complexes[J].American Chemistry Society Advance Chemistry,1971, 106: 250-279.
[24]Berillon J L,Hsu P H, Fiessinger F. Characterization of hydroxyaluminum solutions[J]. Soil Science Society of America Journal,1980, 44: 630-634.
[25]Paker D R, Zelazny L W, Kinraide T B. Comparison three spectrophotometric methods for differentiating mono- and polynuclear hydroxyl-aluminum complexes[J]. Soil Science Society of America Journal, 1988, 52:67-75.
[26]Bertsch P M. Conditions for Al13 polymer formation in partially neutralized aluminum solutions[J]. Soil Science Society of America Journal, 1986, 50: 825-828.
[27]Baes C F, Mesmer R E. The Hydrolysis of Cations[M]. New York: John Wiley & Sons,1976:1-489.
[28]Bertsch P M, Parker D R. The Environmental Chemistry of Aluminum [M].Sposito G, ed.FL Boca Raton: CRC Press,1996:87-148.
[29]Feng Li, Tang Hongxiao. The research progress of Al13 species[J]. Adcances in Environmental Science,1997, 5: 44-51. [冯利,汤鸿霄.Al13形态的研究进展[J].环境科学进展, 1997, 5: 44-51.]
[30]Bertsch P M, Layton W J, Barnhisel R I. Speciation of hydroxyl-aluminum solution by wet chemical and aluminum-27 NMR methods[J]. Soil Science Society of America Journal,1986, 50:1 449-1 454.
[31]Kerven G L, Larsen P L and Blamey F P C, Detrimental sulfate effects on formation of Al13tridecameric polycation in synthetic soil solutions[J].Soil Science Society of America Journal,1995, 59: 765-771.
[32]Alva A K, Kerven G L, Edwards D G, et al. Reduction in toxic aluminum to plants by sulfate complexation[J].Soil Science,1991, 152: 351-359.
[33]Boisvert J-P, Jolicoeur C. Influences of sulfate and/or silicate present in partically prehydrolyzed Al(Ⅲ) flocculants on Al(Ⅲ) speciation in diluted solutions[J]. Colloid and Surfaces,1999, 155: 161-170.
[34]Thomas F, Masion A, Bottero J Y, et al. Aluminum(Ⅲ) speciation with acetate and oxalate. A potentiometric and 27Al NMR study[J]. Environmental Science and Technology,1991, 25:1 553-1 559.
[35]Thomas F, Masion A, Bottero J Y, et al. Aluminum(Ⅲ) speciation with hydroxyl carboxylic acids. 27Al NMR study[J]. Environmental Science and Technology, 1993, 27: 2 511-2 516. 
[36]Masion A, Thomas F, Bottero, et al. Formation of amorphous precipitates form aluminum -organic ligands solutions: Macroscopic and molecular study[J]. Journal of Non-crystalline Solids, 1994, 171: 191-200.
[37]Masion A, Tcjpibar D, Bottero J Y, et al. Chemistry and structure of Al(OH)/Organic precipitates. A small angle x-ray scattering study. 1. Numerical procedure for speciation from scatteringcurves[J]. Langmuir,1994, 10: 4 344-4 348.
[38]Krishanmurti G S R, Wang M K, Huang P M. Role of tartaric acid in the inhibition of the formation of Al13 tridecamer using sulfate precipitation[J]. Clay and Clay minerals,2000, 47: 658-663.
[39]Krishanmurti G S R, Wang M K, Huang P M. Effects of pyrogallol on Al13 tridecamer formation and humification[J]. Clays and Clay Minerals, 2004, 52: 734-741.
[40]Yamaguchi N, Hiradate S, Mizoguchi M, et al. Disappearance of aluminum tridecamer from hydroxyaluminum solution in the presence of humic acid[J]. Soil Science Society of America Journal, 2004, 68: 1 838-1 843.
[41]Ross D S, Bartlett R J, Zhang H, Photochemically induced formation of the “Al13” tridecameric polycation in the presence of Fe(Ⅲ) and organic acids[J]. Chemosphere, 2001, 44: 827-832.
[42]Furrer G, Ludwig C, Schindler P W. On the chemistry of the keggin Al13 polymer[J]. Journal of Colloid and Interface Science,1992,149: 56-67.
[43]Furrer G, Michael G, Bernhard W. On the chemistry of the keggin Al13 polymer: Kinetics of proton-promoted decomposition[J]. Geochimica et Cosmochimica Acta,1999, 63: 3 069-3 076.
[44]Hsu P H. 27Al nuclear magnetic resonance and ferron kinetic studies of partially neutralized AlCl3 solutions[J]. Clay and Clay Minerals, 1986, 34: 604-607.
[45]Bottero J Y, Axelos M, Tchoubar D, et al. Mechanism of formation of aluminum trihydroxide from keggin Al13polymers[J]. Journal of Colloid and Interface Science, 1987, 117: 47-57.
[46]Alpers C N, Jambor J L, Nordstrom D K. Sulfate Minerals: Crystallography, geochemistry and environmental significance[M]. Washington DC: Mineralogical Society of America, 2000:369-376.
[47]Shafran K L, Perry C C. A systematic investigation of aluminium ion speciation at high temperature. 1. Solution studies[J]. Journal of the Chemical Society, Dalton Transactions, 2005,(12):2 098 -2 105.
[48]Chen Zhaoyang, Luan Zhaokun,Zhang Zhongguo, et al. Effect of total aluminum concentration on the formation and transformation of nanosized Al13and Al30 in hydrolytic polymeric aluminum aqueous solutions[J]. Chinese Science Bulletin, 2005, 50:1 445-1 449.[陈朝阳,栾兆坤,张忠国,等.总铝浓度对纳米Al13向Al30形态转化的影响[J].科学通报, 2005, 50, 1 445-1 449.]
[49]Phillips B L, Casey W H, Karlsson M. Bonding and reactivity at oxide mineral surfaces from model aqueous complexes[J]. Nature,2000, 404: 379-382. 
[50]Casey W H, Phillips B L, Karlsson M, et al. Rates and mechanisms of oxygen exchanges between sites in the AlO4Al12(OH)24(H2O)7+12(aq) complex and water: Implications for mineral surface chemistry[J]. Geochimica et Cosmochimica Acta,2000, 64: 2 951-2 964.
[51]Casey W H, Phillips B L, Kinetics of oxygen exchange between sites in the GaOAl12(OH)24(H2O)7+12(aq) molecule and aqueous solution[J]. Geochimica et Cosmochimica Acta,2001, 65(5): 705-714.
[52]Lee A P, Philips B L, Casey W H. The kinetics of oxygen exchange between the GeO4Al12(OH)24(H2O)8+12(aq) molecule and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 577-587.
[53]Loring J S, Yu P, Phillips B L, et al. Activation volumes for oxygen exchange between the GaO4Al12(OH)24(H2O)7+12(aq)(GaAl12) polyoxocation and aqueous solution from variable pressure  17O NMR spectroscopy[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2 791-2 798.
[54]Rustad J R, Loring J S, Casey W H, Oxygen-exchange pathways in aluminum polyoxocations[J]. Geochimica et Cosmochimica Acta, 2004, 68(14): 3 011-3 017.
[55]Forde S, Hynes M J, Kinetics and mechanism of the reactions of the Al13 keggin oligomer [AlO4Al12(OH)(H2O)7+12], with a series of phenolic ligands[J]. New Journal of Chemistry, 2002, 26(8): 1 029-1 034.
[56]Yu P, Lee A P, Phillips B L, et al. Potentiometric and 19F nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: implications for aluminum (hydr)oxide mineral surfaces[J]. Geochimica et Cosmochimica Acta, 2003, 68(14):1 065-1 080.

[1] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[2] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[6] 李岩瑛,蔡英,张春燕,曾婷,杨吉萍. 西北东部季风过渡区夹卷率与夏季风的动力学关系[J]. 地球科学进展, 2019, 34(12): 1316-1327.
[7] 张绍云,董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展, 2019, 34(10): 1028-1037.
[8] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[9] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[10] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[11] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[12] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[13] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[14] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[15] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
阅读次数
全文


摘要