Please wait a minute...
img img
高级检索
地球科学进展  2007, Vol. 22 Issue (3): 305-312    DOI: 10.11867/j.issn.1001-8166.2007.03.0305
综述与评述     
环境中Al13的研究进展
刘 璟,赵峰华,刘建权
中国矿业大学(北京)煤炭资源与环境研究所,煤炭资源与安全开采国家重点实验室,北京 100083
The Research Progress of Al13 Species in Environment
LIU Jing, ZHAO Feng-hua, LIU Jian-quan
Institute of Coal Resources & Environment, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
 全文: PDF(197 KB)  
摘要:

铝的水解反应及其水解聚合铝形态的研究,特别是具有Keggin结构的Al13聚合形态一直是地球化学、环境科学、形态分析以及生物毒理学等众多领域的研究热点之一。综述了近20年来Al13的分析方法、形成和转化机制、影响因素以及动力学方面研究的进展。

关键词: Al13形态Keggin结构影响因素动力学    
Abstract:

Researches on hydrolytic reaction and polynuclear species of aluminum, especially tridecameric Al13 which arranged in the Keggin structure, are always obtained emphasis in many fields, which include geochemistry, environmental science, speciation analysis, toxicity and so on, the article review research progress of analytical measurements, mechanism of form and transform, influence factors and molecules kinetics during last two decades.

Key words: Keggin structure    Molecules Kinetics.    Al13 species    Influence factors
收稿日期: 2006-11-27 出版日期: 2007-03-10
:  X142  
通讯作者: 赵峰华(1969-),男,山西和顺人,教授,博士生导师,从事环境地球化学、煤地质学和煤地球化学研究工作.E-mail:zfh@cumtb.edu.cn     E-mail: zfh@cumtb.edu.cn
作者简介: 刘璟(1982-),男,重庆万州人,博士研究生,主要从事Al的环境地球化学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘璟
刘建权
赵峰华

引用本文:

刘璟,赵峰华,刘建权. 环境中Al13的研究进展[J]. 地球科学进展, 2007, 22(3): 305-312.

LIU Jing, ZHAO Feng-hua, LIU Jian-quan. The Research Progress of Al13 Species in Environment. Advances in Earth Science, 2007, 22(3): 305-312.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2007.03.0305        http://www.adearth.ac.cn/CN/Y2007/V22/I3/305

[1]Rao G V,Rao K S. Evidence for a hydroxyl-aluminum polymer(Al13) in synaptosomers[J]. The FEBS Journal,1992, 331(1): 49-50.
[2]Poleo A B S. Aluminum polymerization-a mechanism of acute toxicity of aqueous aluminum to fish[J]. Aquatic Toxicology,1995, 31: 347-352.
[3]Parker D R, Kinraide T B, Zelazny L W. On the phytotoxicity of polynuclear hydroxyl-aluminum complexes[J].Soil Science Society of America Journal,1989, 53: 789-796.
[4]Lothenbach B, Furrer G. Immobilization of heavy metals by polynuclear aluminum and montmorillonite compounds[J]. Environmental Science and Technology,1997, 31: 1 452-1 462.
[5]Teagaradeu D L, Kozlowski J F, White J L, et al. Aluminum chlorohydrate Ⅰ Structure studies[J].Journal of Pharmaceutical Sciences,1981, 70:758-761.
[6]Van Bruggen M P B, Donker M, Lekkerkerker H N W, et al. Anomalous stability of aqueous boehmite dispersions induced by hydrolyzed aluminium poly-cations[J].Colloids and Surfaces,1999, 150: 115-128.
[7]Phillips B L, Lee A P, Casey W H. Rates of oxygen exchange between the Al2O8Al28(OH) 56(H2O)18+24 (aq) (Al30) molecule and aqueous solution[J].Geochimica et Cosmochimica Acta,2003, 67: 2 725-2 733. 
[8]Casey W H. Large aqueous aluminum hydroxide molecules [J].Chemical Reviews,2006, 106: 1-16.
[9]Johansson G. On the crystal structures of some basic aluminum sulfates[J].Acta Chemica Scandinavica,1960, 14: 771-773.
[10]Furrer G, Trusch B, Müller C. The formation of polynuclear Al13 under simulated natural conditions[J].Geochimica et Cosmochimica Acta,1992, 56: 3 831-3 838.
[11]Gérard F, Boudot J P, Ranger J. Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters[J]. Applied Geochemistry,2001, 16: 513-529.
[12]Hunter D, Ross D S. Evidence for a phytotoxic hydroxyl-aluminum polymer in organic soil horizons[J]. Science, 1991, 251: 1 056-1 058.
[13]Masion A, Thomas F, Tchoubar D, et al. Chemistry and structure of Al(OH)/organic precipitates. A small-angle X-ray scattering study. 3. depolymerization of the Al13 polycation by organic ligands[J]. Langmuir, 1994, 10: 4 353-4 356.
[14]Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science,2002, 297: 2 245-2 247.
[15]Thompson A R, Kunwar A C, Gutowsky H S, et al. Oxygen-17 and aluminium-27 nuclear magnetic resonance spectroscopic investigations of aluminum(Ⅲ) hydrolysis products[J]. Journal of the Chemical Society, Dalton Transactions,1987, 10: 2 317-2 322.
[16]Akitt J W. Multinuclear studies of aluminum compounds[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,1989, 21: 1-149.
[17]Parker D R, Bertsch P M. Identification and quantification of the “Al13” tridecameric polycation using Ferron[J]. Environmental Science and Technology,1992, 26: 908-914.
[18]Allouche L, Taulelle F. Conversion of Al13 keggin ε into Al30: A reaction controlled by aluminum monomers[J].Inorganic Chemistry Communications,2003,6:1 167-1 170.
[19]Akitt J W, Farthing A. Aluminum-27 nuclear magnetic resonance studies of the hydrolysis of aluminum (Ⅲ), Ⅱ.Gel-permeation chromatography[J].Journal of the Chemical Society, Dalton Transactions,1981, 7: 1 606-1 608.
[20]Nazar L F, Rowsell J J. Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster [Al2O8Al28(OH)56(H2O)18+26] and its δ-keggin moiet [J]. Journal of the American Chemical Society,2000, 122: 3 777-3 778.
[21]Allouche L, G rardin C, Loiseau T, et al. Al30: A giant aluminum polycation[J]. Angewandte Chemie(International edition in English),2000, 39(3):511-514.
[22]Turner R C, Ross G J. Conditions in solution during the formation of gibbsite in dilute Al salt solutions. Effect of Cl concentration and temperature and a proposed mechanism for gibbsite formation[J]. Canadian Journal of Chemistry,1970, 48: 723-729.
[23]Smith R W. Relation among equilibrium and nonequilibrium aqueous species of aluminum hydroxyl complexes[J].American Chemistry Society Advance Chemistry,1971, 106: 250-279.
[24]Berillon J L,Hsu P H, Fiessinger F. Characterization of hydroxyaluminum solutions[J]. Soil Science Society of America Journal,1980, 44: 630-634.
[25]Paker D R, Zelazny L W, Kinraide T B. Comparison three spectrophotometric methods for differentiating mono- and polynuclear hydroxyl-aluminum complexes[J]. Soil Science Society of America Journal, 1988, 52:67-75.
[26]Bertsch P M. Conditions for Al13 polymer formation in partially neutralized aluminum solutions[J]. Soil Science Society of America Journal, 1986, 50: 825-828.
[27]Baes C F, Mesmer R E. The Hydrolysis of Cations[M]. New York: John Wiley & Sons,1976:1-489.
[28]Bertsch P M, Parker D R. The Environmental Chemistry of Aluminum [M].Sposito G, ed.FL Boca Raton: CRC Press,1996:87-148.
[29]Feng Li, Tang Hongxiao. The research progress of Al13 species[J]. Adcances in Environmental Science,1997, 5: 44-51. [冯利,汤鸿霄.Al13形态的研究进展[J].环境科学进展, 1997, 5: 44-51.]
[30]Bertsch P M, Layton W J, Barnhisel R I. Speciation of hydroxyl-aluminum solution by wet chemical and aluminum-27 NMR methods[J]. Soil Science Society of America Journal,1986, 50:1 449-1 454.
[31]Kerven G L, Larsen P L and Blamey F P C, Detrimental sulfate effects on formation of Al13tridecameric polycation in synthetic soil solutions[J].Soil Science Society of America Journal,1995, 59: 765-771.
[32]Alva A K, Kerven G L, Edwards D G, et al. Reduction in toxic aluminum to plants by sulfate complexation[J].Soil Science,1991, 152: 351-359.
[33]Boisvert J-P, Jolicoeur C. Influences of sulfate and/or silicate present in partically prehydrolyzed Al(Ⅲ) flocculants on Al(Ⅲ) speciation in diluted solutions[J]. Colloid and Surfaces,1999, 155: 161-170.
[34]Thomas F, Masion A, Bottero J Y, et al. Aluminum(Ⅲ) speciation with acetate and oxalate. A potentiometric and 27Al NMR study[J]. Environmental Science and Technology,1991, 25:1 553-1 559.
[35]Thomas F, Masion A, Bottero J Y, et al. Aluminum(Ⅲ) speciation with hydroxyl carboxylic acids. 27Al NMR study[J]. Environmental Science and Technology, 1993, 27: 2 511-2 516. 
[36]Masion A, Thomas F, Bottero, et al. Formation of amorphous precipitates form aluminum -organic ligands solutions: Macroscopic and molecular study[J]. Journal of Non-crystalline Solids, 1994, 171: 191-200.
[37]Masion A, Tcjpibar D, Bottero J Y, et al. Chemistry and structure of Al(OH)/Organic precipitates. A small angle x-ray scattering study. 1. Numerical procedure for speciation from scatteringcurves[J]. Langmuir,1994, 10: 4 344-4 348.
[38]Krishanmurti G S R, Wang M K, Huang P M. Role of tartaric acid in the inhibition of the formation of Al13 tridecamer using sulfate precipitation[J]. Clay and Clay minerals,2000, 47: 658-663.
[39]Krishanmurti G S R, Wang M K, Huang P M. Effects of pyrogallol on Al13 tridecamer formation and humification[J]. Clays and Clay Minerals, 2004, 52: 734-741.
[40]Yamaguchi N, Hiradate S, Mizoguchi M, et al. Disappearance of aluminum tridecamer from hydroxyaluminum solution in the presence of humic acid[J]. Soil Science Society of America Journal, 2004, 68: 1 838-1 843.
[41]Ross D S, Bartlett R J, Zhang H, Photochemically induced formation of the “Al13” tridecameric polycation in the presence of Fe(Ⅲ) and organic acids[J]. Chemosphere, 2001, 44: 827-832.
[42]Furrer G, Ludwig C, Schindler P W. On the chemistry of the keggin Al13 polymer[J]. Journal of Colloid and Interface Science,1992,149: 56-67.
[43]Furrer G, Michael G, Bernhard W. On the chemistry of the keggin Al13 polymer: Kinetics of proton-promoted decomposition[J]. Geochimica et Cosmochimica Acta,1999, 63: 3 069-3 076.
[44]Hsu P H. 27Al nuclear magnetic resonance and ferron kinetic studies of partially neutralized AlCl3 solutions[J]. Clay and Clay Minerals, 1986, 34: 604-607.
[45]Bottero J Y, Axelos M, Tchoubar D, et al. Mechanism of formation of aluminum trihydroxide from keggin Al13polymers[J]. Journal of Colloid and Interface Science, 1987, 117: 47-57.
[46]Alpers C N, Jambor J L, Nordstrom D K. Sulfate Minerals: Crystallography, geochemistry and environmental significance[M]. Washington DC: Mineralogical Society of America, 2000:369-376.
[47]Shafran K L, Perry C C. A systematic investigation of aluminium ion speciation at high temperature. 1. Solution studies[J]. Journal of the Chemical Society, Dalton Transactions, 2005,(12):2 098 -2 105.
[48]Chen Zhaoyang, Luan Zhaokun,Zhang Zhongguo, et al. Effect of total aluminum concentration on the formation and transformation of nanosized Al13and Al30 in hydrolytic polymeric aluminum aqueous solutions[J]. Chinese Science Bulletin, 2005, 50:1 445-1 449.[陈朝阳,栾兆坤,张忠国,等.总铝浓度对纳米Al13向Al30形态转化的影响[J].科学通报, 2005, 50, 1 445-1 449.]
[49]Phillips B L, Casey W H, Karlsson M. Bonding and reactivity at oxide mineral surfaces from model aqueous complexes[J]. Nature,2000, 404: 379-382. 
[50]Casey W H, Phillips B L, Karlsson M, et al. Rates and mechanisms of oxygen exchanges between sites in the AlO4Al12(OH)24(H2O)7+12(aq) complex and water: Implications for mineral surface chemistry[J]. Geochimica et Cosmochimica Acta,2000, 64: 2 951-2 964.
[51]Casey W H, Phillips B L, Kinetics of oxygen exchange between sites in the GaOAl12(OH)24(H2O)7+12(aq) molecule and aqueous solution[J]. Geochimica et Cosmochimica Acta,2001, 65(5): 705-714.
[52]Lee A P, Philips B L, Casey W H. The kinetics of oxygen exchange between the GeO4Al12(OH)24(H2O)8+12(aq) molecule and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 577-587.
[53]Loring J S, Yu P, Phillips B L, et al. Activation volumes for oxygen exchange between the GaO4Al12(OH)24(H2O)7+12(aq)(GaAl12) polyoxocation and aqueous solution from variable pressure  17O NMR spectroscopy[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2 791-2 798.
[54]Rustad J R, Loring J S, Casey W H, Oxygen-exchange pathways in aluminum polyoxocations[J]. Geochimica et Cosmochimica Acta, 2004, 68(14): 3 011-3 017.
[55]Forde S, Hynes M J, Kinetics and mechanism of the reactions of the Al13 keggin oligomer [AlO4Al12(OH)(H2O)7+12], with a series of phenolic ligands[J]. New Journal of Chemistry, 2002, 26(8): 1 029-1 034.
[56]Yu P, Lee A P, Phillips B L, et al. Potentiometric and 19F nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: implications for aluminum (hydr)oxide mineral surfaces[J]. Geochimica et Cosmochimica Acta, 2003, 68(14):1 065-1 080.

[1] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[2] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[3] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[4] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[5] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[6] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[7] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[8] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[9] 蒋建军,代立东,李和平,单双明,胡海英,惠科石 . 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[10] 包汉勇,郭战峰,张罗磊,黄亚平. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3): 337-346.
[11] 李云春,王显祥,赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1106-1118.
[12] 姚玉鹏,张进江. 国家自然科学基金大陆动力学研究资助与绩效[J]. 地球科学进展, 2011, 26(4): 460-464.
[13] 宋洪军,季如宝,王宗灵. 近海浮游植物水华动力学和生物气候学研究综述[J]. 地球科学进展, 2011, 26(3): 257-265.
[14] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[15] 刘桂梅,李海,王辉,柴扉. 我国海洋绿潮生态动力学研究进展[J]. 地球科学进展, 2010, 25(2): 147-153.