地球科学进展 ›› 1997, Vol. 12 ›› Issue (5): 434 -439. doi: 10.11867/j.issn.1001-8166.1997.05.0434

综述与评论 上一篇    下一篇

河口沉积物—水界面重金属生物地球化学研究进展
陈宗团,徐立,洪华生   
  1. 厦门大学国家教委海洋生态环境开放研究实验室 厦门 361005
  • 收稿日期:1996-10-15 修回日期:1997-03-24 出版日期:1997-10-01
  • 通讯作者: 陈宗团,男,1961年10月出生,副研究员,主要从事近海生物地球化学研究。

BIOGEOCHEMICAL PROCESSES OF HEAVY METALS AT THE SEDIMENT-WATER INTERFACE OF ESTUARY:A REVIEW

CHEN Zongtuan, XU Li, HONG Huasheng   

  1. SEDC Lab.of Marine Ecological Environment,Environmental Science Research Center,Xiamen University,Xiamen 361005
  • Received:1996-10-15 Revised:1997-03-24 Online:1997-10-01 Published:1997-10-01

河口区既是人类排污物的主要汇集地,又是单向流体和双向流体相互作用的场所,三者构成一个复杂而多变的地球化学物理场。在这里因一定的物理、化学和生物化学作用使来自陆地的重金属污染物从水体中沉降下来,进入底部沉积物即积累过程,又会因类似的作用使这些金属从沉积物中活化而再次进入水体即释放过程,产生所谓的“二次污染”,河口沉积物水界面过程调控着这一体系的方向与限度。对该领域在过去几年里的主要研究成果进行阐述,进而指明该领域研究中有待解决的问题。 

Various factors governing the accumulation, dispersion and form exchanges of heavy metals at sediment water interface of estuaries are discussed and reviewed. Concentrations and bioavailabilities of heavy metals in estuaries depended on many different processes, including:①mobilization of metals of the porewater and their chemical properties;②transportation of metals at sediment water interface;③sediment components;④organism activities, and⑤effect of water current washing and disturbance, bioturbulence, salinity, redox and pH on the processes. So far some conclusions have been achieved:①concentration and distribution of heavy metals in major estuaries and adjacent areas were measured;②sequential extraction procedure for the specification for heavy metals have been presented and widely applied to study on metal behaviors in water environment;③research on relationship between organism growth and content of heavy metal in organism was made by in situ measures and indoor toxic culture experiments;④lots of experiments for sorption and desorption of heavy metals on various material have been completed and presented many isotherm equations;⑤several methods for determining background values of metals have been set up. Some problems to be resolved in near future are those:①quantitative study on biogeochemical cycling model of heavy metals;②metal release from sediments would become another source of pollution and must be pay attention to;③international standard analysis for heavy metals, especially for specification determinations, should be set up.

中图分类号: 

1 Gibbs R J. Transport phase of transition metals in the Amazon and Yukon river. Geology Society of American Bullion,1977,88:829-843.
2 Stumm W, Brauner P A. Chemical Speciation. In:Riley J P, Skirrow G K, eds. Chemical Oceanography, Vol.1, New York: Academic Press,1975.173-279.
3 Tessier A, Cambell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metal.Analysis Chemistry, 1979, 51(7):844-851.
4 陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社, 1992. 1-387.
5 金相灿.沉积物污染化学.北京:中国环境科学出版社,1992.1-365.
6 陈宗团.湘江沉积物中重金属污染物的运移机理及沉积速率的研究.长春地质学院研究生论文集, 1985,1:24-39.
7 Modak D D . Mobile and bound forms of trace metals in sediments of the lower Ganges. Water Research, 1994, 26(11): 1541-1548.
8 Singer P C. Influence of dissolved organics on the distribution, transportation, and fate of heavy metals in aquatic system. In: Suffet I H, ed. Fate of Pollutants in the Air and Water Environment, Part 1. New York:1977.155-182.
9 Kumaqai H, Sacki K. Variation pattern of heavy metal content of short neck clam Tapes Japonica with its growth.Bull Jap Soc Fish, 1981, 47(11): 1511-1513.
10 陈水土,杨慧辉.九龙江口和厦门西港海域若干重金属元素的生物地球化学特性.台湾海峡,1993,12(4): 376-384.
11 Schumnacner M . Variations of heavy metals in water, sediment and biota from the delta of Ebro River, Spain. Journal of Env Science and Health, Part A. 1995 ,30(6):1361-1372.
12 Cline J T, Upchurch S B. Mode of heavy metal migration in the upper strata of lake sediment. Proc 16th Conf Great Lakes Research. Int Assoc Great Lakes Res, 1973.349-356.
13 Warren L A, Zimmerman A P. Suspended particulate oxides and organic matter interactions in trace metal sorption reaction in a small urban river. Biogeochmistry , 1994, 24(1): 21-34.
14 Evens D W, Cutshall N H, Cross F A, et al. Manganese cycling in the Newport River Estuary. N C Estuarine Coastal Maine Science, 1977,5: 71-80.
15 Calmano W, Hong J, Forstner U . Binding and mobilization of heavy metal in contaminated sediment affected by the pH and redox potential. Water Science and Technology , 1993, 28 (8-9) : 223-235.
16 Lu C S J, Chen K Y. Migration of trace metals in interfaces of seawater and polluted surface sediments. Environ Sci Technol,977, 11: 174-182.
17 Brugrnann L. Metals in sediment and suspended matter of the river Elbe. Science of the Total Environment, 1995,159 (1) : 53-65.
18 Bubby J M. The behavior of mercury within a contaminated tidal river system. Water Science and Technology, 1993(8-9):329-338.
19 Windom HL. Investigations of changes in heavy metal concentrations resulting from maintenance dredging of Mobile Bay ship channel. Mobile Bay, Alabama, Rep U S Armey Corps of Engineers, Mobile Distribution, 1973.46-56.
20 Basu A, Molinaroli E. Toxic metal in Venice lagoon, observation and possible removal. Environmental Geology,1994 , 24 : 203-216.
21 Presley B J, Trefry J H. Sediment-water interactions and the geochemistry of interstitial waters. In: Olausson E, Cato I, eds. Chemistry and Biogeochemistry of Estuaries. John Wiley and Sons Ltd, 1980. 187-232.
22 Berner R A. Distribution and diagenesis of sulfur in some sediments from the Gulf of California. Marine Geology,1964,(1): 117-140.
23 Gehlen M , Malschaert H, Vanraaphorst W R. Special and temporal variability of benthic silica fluxes in the southeastern North Sea. Continental Shelf Research, 1995, 15 (21) : 1675-1691.
24 Maran S, Ciaeri G, Matrinotti W. Mathematical models for estimating fluxes at the sediment-water interface in benthic chamber experiments. Hydrobiologia, 1995, 297 (1): 67-74.
25 Huang W ,Campredom R, Abrao J J, et al. Variation of heavy metals in recent sediments from Piratininga Lagoon( Brazil )-interpretation of geochemical data with the aid of multivariate analysis. Environmental Geology, 1994, 23( 4 ) : 241-247.
26 Hanson P J, Evans D W, Colby D R, et al. Assessment of elemental contamination in estuarine and coastal environment based on geochemical and statistical modeling of sediments. Marine Environmental Research, 1993, 36(4):237-266.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[4] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[5] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[6] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[9] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[10] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[11] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[12] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[13] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[14] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[15] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
阅读次数
全文


摘要