地球科学进展 ›› 2022, Vol. 37 ›› Issue (3): 303 -315. doi: 10.11867/j.issn.1001-8166.2021.036

“东南亚构造、沉积与资源环境效应”专辑 上一篇    下一篇

北伊里安盆地北缘海底滑坡特征及成因研究
胡庆 1 , 2 , 3( ), 栾锡武 1( ), 冉伟民 2 , 3, 魏新元 4, 王嘉 4, 叶传红 1, 韦明盟 5, 龚梁轩 5, 刘泽璇 6   
  1. 1.山东科技大学 地球科学与工程学院,山东 青岛 266590
    2.中国地质调查局青岛海洋地质 研究所,山东 青岛 266237
    3.青岛海洋科学与技术试点国家实验室,海洋矿产资源评价与 探测技术功能实验室,山东 青岛 266237
    4.中国海洋大学 海洋地球科学学院,山东 青岛 266100
    5.中国地质大学(武汉) 海洋学院,湖北 武汉 430074
    6.东北石油大学 地球科学学院,黑龙江 大庆 163318
  • 收稿日期:2021-05-24 修回日期:2021-11-24 出版日期:2022-03-10
  • 通讯作者: 栾锡武 E-mail:2814176764@qq.com;xluan@sdust.edu.cn
  • 基金资助:
    中国—东盟海上合作基金项目“中国—东盟海洋地震数据平台与研究中心建设”(12120100500017001);国家自然科学基金项目“孟加拉湾东北部沉积过程与特提斯东段构造变形耦合关系”(92055211)

Characteristics and Genesis of Submarine Landslides in the Northern Margin of the North Irian Basin

Qing HU 1 , 2 , 3( ), Xiwu LUAN 1( ), Weimin RAN 2 , 3, Xinyuan WEI 4, Jia WANG 4, Chuanhong YE 1, Mingmeng WEI 5, Liangxuan GONG 5, Zexuan LIU 6   

  1. 1.College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China
    2.Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266237,China
    3.Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China
    4.College of Marine Geosciences,Ocean University of China,Qingdao 266100,China
    5.College of Marine Science and Technology,China University of Geosciences (Wuhan),Wuhan 430074,China
    6.School of Earth Sciences,Northeast Petroleum University,Daqing Heilongjiang 163318,China
  • Received:2021-05-24 Revised:2021-11-24 Online:2022-03-10 Published:2022-04-14
  • Contact: Xiwu LUAN E-mail:2814176764@qq.com;xluan@sdust.edu.cn
  • About author:HU Qing (1994-), male, Tongling City, Anhui Province, Master student.Research areas include seismic data interpretation and basin analysis. E-mail: 2814176764@qq.com
  • Supported by:
    the China-ASEAN Maritime Cooperation Fund Project "China-ASEAN Marine seismic data center"(12120100500017001);The National Natural Science Foundation of China "Coupling relationship between sedimentary process and tectonic deformation of northeastern Bay of Bengal, an Eastern Tethys section"(92055211)

北伊里安盆地位于澳大利亚板块与太平洋板块的汇聚挤压边缘,自晚白垩世开始,澳大利亚板块不断向北移动,与太平洋板块发生多次挤压碰撞,形成了构造活动复杂区域,由此为盆地北缘海底形成广泛滑坡提供基础。通过分析盆地北部高精度的二维地震资料,对海底滑坡特征进行了详细刻画,识别出海底滑坡的3个构造单元:头部、体部和趾部,不同部位都具有其典型的地震特征。该区域海底滑坡广泛发育,分为陆坡/陆架滑坡、水道壁滑坡、峡谷滑坡和块体流沉积4种类型。结合该盆地的区域地质背景,认为板块之间的俯冲碰撞等构造运动对海底滑坡起了主要控制作用,在海底地形坡度作为内因和沉积物供给速率、海平面变化、地震活动等外界因素的共同作用下诱发海底滑坡。

The North Irian Basin is located at the convergence and compression edges of the Australian and Pacific plates. Since the Late Cretaceous, the Australian Plate has been moving northward, and collision with the Pacific Plate has occurred several times, forming a complex area of tectonic activity. This provides a foundation for the formation of extensive landslides on the seafloor in the northern margin of the basin. By analyzing the high precision 2D seismic data in the north of the basin, the characteristics of submarine landslides are described in detail. Three structural units of a submarine landslide, namely the headwall domain, translation domain, and toe domain, are identified, which have their typical seismic characteristics. Submarine landslides are widespread in this area and can be divided into four types: continental slope/shelf, channel wall, valley, and Mass Transport Deposits (MTDs). Combined with the regional geological background of the basin, it is considered that the tectonic movement of subduction and collision between plates plays a major role in controlling submarine landslides, which is induced by the combined action of external factors such as the submarine terrain slope as the internal cause, the sediment supply rate, sea-level change, and seismic activity.

中图分类号: 

图1 北伊里安盆地区域地质图(据参考文献[ 22 24 ]修改)
Fig. 1 Regional geological map of North Irian Basinmodified after references2224])
图2 北伊里安盆地北缘海底滑坡分布范围及海底坡度图
Fig. 2 Submarine landslide distribution range and subsea slope map in the northern margin of the North Irian Basin
图3 北伊里安盆地地层柱状图(据参考文献[ 18 33 ]修改)
Fig. 3 Stratigraphic histogram of North Irian Basinmodified after references1833])
图4 宽缓头部地震识别特征及模式图(L6剖面)
Fig. 4 Seismic identification characteristics and pattern diagram of head domain in slope with gentle angleL6 profile
图5 海底滑坡在地震剖面上的识别(L3剖面)
Fig. 5 Identification of submarine landslide in the seismicL3 profile
图6 陡倾头部地震识别特征(L7剖面)
Fig. 6 Seismic identification characteristics of head domain in slope with abrupt angleL7 profile
图7 滑坡体内部形态图
Fig. 7 Internal morphology of the landslides
图8 三角洲前积体(L4剖面)
Fig. 8 Prograding lobes of fluvial deltaL4 profile
图9 舌状前积体(L3剖面)
Fig. 9 Prograding lobes of tongue-shaped depositsL3 profile
图10 峡谷滑坡及模式图(L2剖面)
Fig. 10 Canyon landslide and pattern mapL2 profile
图11 水道壁滑坡及模式图(L3剖面)
Fig. 11 Channel wall landslide and pattern mapL3 profile
图12 块体流沉积及模式图(L5剖面)
Fig. 12 Mass Transport DepositsMTDsand pattern mapL5 profile
图13 U1484U1485位置图及U1484U1485海底钻探沉积物岩性、沉积速率图(据参考文献[ 47 ]修改)
deposition rate mapmodified after reference 47 ])
Fig. 13 U1484U1485 location map and U1484U1485 seabed drilling sediment lithology
图14 19632004年新几内亚岛5级以上地震分布图(据参考文献[ 22 ]修改)
Fig. 14 Seismic distribution of magnitude 5 and above in New Guinea since 1963-2004modified after reference 22 ])
1 WU Shiguo, QIN Zhiliang, WANG Dawei,et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3 184-3 195.
吴时国,秦志亮,王大伟,等.南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报,2011, 54(12): 3 184-3 195.
2 WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea [J]. Acta Sedimentologica Sinica,2009,27(5): 922-930.
吴时国,秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报,2009,27(5):922-930.
3 SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine landslide[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.
孙运宝,吴时国,王志君,等.南海北部白云大型海底滑坡的几何形态与变形特征[J].海洋地质与第四纪地质,2008,28(6):69-77.
4 QIN Ke, SUN Yunbao, ZHAO Tiehu,et al. Seismic response and genetic mechanism of the submarine landslides in Shenhu area,South China Sea [J].Marine Geology & Quaternary Geology, 2015,35(5):69-76.
秦轲,孙运宝,赵铁虎,等.南海北部陆坡神狐海域海底滑坡地球物理响应特征及其与流体活动相关性[J].海洋地质与第四纪地质,2015,35(5):69-76.
5 CHEN Shanshan, SUN Yunbao, WU Shiguo. Sea bottom landslide in the Shenhu area on the north margin of South China Sea and triggering mechanisms[J]. Marine Geology Frontiers, 2012,28(6): 40-45.
陈珊珊,孙运宝,吴时国. 南海北部神狐海域海底滑坡在地震剖面上的识别及形成机制[J]. 海洋地质前沿, 2012, 28(6):40-45.
6 QIN Zhiliang. Sedimentary process, distribution and mechanism of mass transport deposits, the slope area of northern South China Sea [D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences, 2012.
秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 青岛:中国科学院海洋研究所,2012.
7 LI Wei. Seismic characteristics and trigger mechanisms of submarine landslides in northern South China Sea [D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences, 2013.
李伟. 南海北部海底滑坡的地震特征及成因分析[D]. 青岛:中国科学院海洋研究所,2013.
8 HEEZEN B C, EWING W M. Turbidity currents and submarine slumps and the 1929 Grand Banks (Newfoundland) earthquake [J]. American Journal of Science, 1952, 250(12): 849-873.
9 LOCAT J, LEE H J. Submarine landslides: advances and challenges[J]. Canadian Geotechnical Journal, 2002, 39(1):193-212.
10 LEI Yani, WANG Guangjian, WU Shiguo, et al. Preliminary research on characteristics,distribution patterns and origins of submarine slides in deepwater oil and gas exploration area of Baiyun Sag[J]. Marine Geology & Quaternary Geology, 2018,38(2):106-114.
雷亚妮,王广建,吴时国,等.白云凹陷深水油气开发区海底滑坡的特征、分布以及成因初探[J].海洋地质与第四纪地质,2018,38(2):106-114.
11 WANG Lei, WU Shiguo, LI Qingping, et al. Submarine slides and influencing factors in the continental shelf break area of the Pearl River Mouth Basin[J]. Marine Sciences, 2016, 40(5): 131-141.
王磊,吴时国,李清平,等.珠江口盆地陆架坡折带海底滑坡及其影响因素[J].海洋科学,2016,40(5):131-141.
12 HE Yunlong, XIE Xinong, LU Yongchao,et al. Architecture and characteristics of Mass Transport Deposites (MTDs) in Qiongdongnan Basin in northern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 905-913.
何云龙,解习农,陆永潮,等.琼东南盆地深水块体流构成及其沉积特征[J].地球科学——中国地质大学学报,2011,36(5):905-913.
13 MA Yun, LI Sanzhong, LIANG Jinqiang, et al. Characteristics and mechanism of submarine landslides in the Qiongdongnan Basin Northern South China Sea[J]. Journal of Jilin University (Earth Science Edition), 2012,42(): 196-205.
马云, 李三忠, 梁金强,等.南海北部琼东南盆地海底滑坡特征及其成因机制[J]. 吉林大学学报(地球科学), 2012,42(): 196-205.
14 SATAKE K, TANIOKA Y. The July 1998 Papua New Guinea earthquake: mechanism and quantification of unusual tsunami generation[J]. Pure & Applied Geophysics, 2003, 160(10/11): 2 087-2 118.
15 BARDET J P, SYNOLAKIS C E, DAVIES H L, et al. Landslide Tsunamis: recent findings and research directions[J]. Pure & Applied Geophysics, 2003, 160(10/11):1 793-1 809.
16 MOHAMMAD H, SATAKE K. Source properties of the 1998 July 17 Papua New Guinea tsunami based on tide gauge records[J]. Geophysical Journal International,2015,202:361-369.
17 GONG Wei, JIANG Xiaodian, XING Junhui, et al. Subduction dynamics of the New-Guinea-Solomon arc system: constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology,2019,39(5):115-130.
宫伟,姜效典,邢军辉,等.新几内亚—所罗门弧俯冲体系动力过程:板块起始俯冲的制约[J].海洋地质与第四纪地质,2019,39(5):115-130.
18 BALDWIN S L, FITZGERALD P G, WEBB L E. Tectonics of the New Guinea region[J]. Annual Review of Earth and Planetary Sciences,2012,40:495-520.
19 HILL K C, HALL R. Mesozoic-Cenozoic evolution of Australia's New Guinea Margin in a West Pacific Context[M]//Australia: evolution and dynamics of the Australian Plate. Geological Society of America,2003:265-290.
20 RAO Yiqun. Petroleum geology and exploration potential of oil and gas in Block A of Waipogah Basin, Indonesia[J]. China Petroleum Exploration,2012,17(5):55-58,83.
饶轶群.印尼Waipogah盆地A区块油气地质特征与勘探潜力分析[J].中国石油勘探,2012,17(5):55-58,83.
21 TOBIN J, ZAHIROVIC D S, HASSAN D R, et al. Tectonic and geodynamic evolution of the Northern Australian Margin and New Guinea[J]. ASEG Extended Abstracts, 2018(1):1-7.
22 DAVIES H L. The geology of New Guinea—the Cordilleran Margin of the Australian Continent[J]. Episodes, 2012, 35(1):87-102.
23 WHITE L T, HALL R, GUNAWAN I, et al. Tectonic Mode Switches recorded at the northern edge of the Australian Plate During the Pliocene and Pleistocene[J]. Tectonics, 2019, 38(1/2):281-306.
24 MCADOO R L. Tectonic elements of the North Irian Basin[C]//Proceedings Indonesian Petroleum Association, 27th annual convention. Jakarta: Indonesian Petroleum Association (IPA), 2000: 1-17.
25 GOLD D P, BURGESS P M, BOUDAGHER-FADEL M K, et al. Carbonate drowning successions of the Bird's Head, Indonesia[J]. Facies, 2017, 63(4): 1-22.
26 BABAULT J, VIAPLANA-MUZAS M, LEGRAND X, et al. Source-to-Sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia)[J]. Journal of Asian Earth Sciences, 2018, 156(MAY1):265-287.
27 UFFORD A Q VAN, CLOOS M. Cenozoic tectonics of New Guinea[J]. AAPG Bulletin, 2005, 89(1):119-140.
28 LIU Xiang, GUO Jianhua, ZHANG Linting, et al. Late Paleozoic-Cenozoic tectonic evolutions and hydrocarbon accumulation conditions of Papuan Basin[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 131-140.
刘湘,郭建华,张琳婷,等.巴布亚盆地晚古生代—新生代构造演化与油气成藏条件[J].中南大学学报(自然科学版),2018,49(1):131-140.
29 LUO Zongqiang, YANG Huaizhong, LIU Tieshu, et al. Distinct tectonic evolutions and its effect on hydrocarbon accumulation of the Papuan Basin[J]. Earth Science—Journal of China University of Geosciences,2012,37():143-150.
骆宗强,阳怀忠,刘铁树,等.巴布亚盆地构造差异演化及其对油气成藏的控制[J].地球科学——中国地质大学学报,2012,37():143-150.
30 CHENG Yuehong, HU Xiaolin, FANG Yong, et al. Exploration potential and characteristics of hydrocarbon accumulation of Jurassic in Bintuni Basin, Indonesia[J]. Science Technology and Engineering,2017,17(36): 67-74.
程岳宏,胡孝林,方勇,等印度尼西亚宾都尼盆地侏罗系油气成藏特征及勘探潜力[J].科学技术与工程,2017,17(36):67-74.
31 MELIA S, HALL R. The Sorong Fault Zone, Indonesia: mapping a fault zone offshore[C]// AGU fall meeting. AGU Fall Meeting Abstracts, 2017.
32 SAPUTRA A, HALL R, WHITE L. Development of the Sorong Fault Zone North of Misool Eastern Indonesia[C]// Proceedings Indonesian Petroleum Association thirty-eight annual convention & exhibition. Jakarta: Indonesian Petroleum Association (IPA), 2014.
33 NOBLE R, TEAS P, DECKER J, et al. Kofiau and Cendrawasih Bay frontier basin exploration: from joint studies to post-drill assessment[C]// Proceedings Indonesian Petroleum Association, technical symposium, Indonesia Exploration: Where From-Where To, 2016. Jakarta: Indonesian Petroleum Association (IPA), 2018.
34 IMBO Y, DE BATIST M, CANALS M, et al. The Gebra Slide: a submarine slide on the Trinity Peninsula Margin, Antarctica[J]. Marine Geology, 2003, 193(3/4):235-252.
35 SCHWAB W C, LEE H J. Causes of two slope failure types in continental shelf sediment, northeastern gulf of Alaska[J]. SEPM Journal of Sedimentary Research,1988(58): 1-11.
36 WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large Quaternary mass transport depositions in the slope of South China Sea[J]. Marine Geology & Quaternary Geology, 2009,29(5):65-72.
王大伟,吴时国,秦志亮,等.南海陆坡大型块体搬运体系的结构与识别特征[J].海洋地质与第四纪地质,2009,29(5):65-72.
37 HUVENNE V A I, CROKER P F, Henriet JEAN‐PIERRE, et al. A refreshing 3D view of an ancient sediment collapse and slope failure[J]. Terra Nova, 2002, 14(1):33-40.
38 LEWIS K B. Slumping on a continental slope inclined at 1°-4°[J]. Sedimentology, 1971, 16(1/2):97-110.
39 BULL S, CARTWRIGHT J, HUUSE M,et al. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine & Petroleum Geology, 2009, 26(7):1 132-1 151.
40 HeSTHAMMER J, FOSSEN H. Evolution and geometries of gravitational collapse structures with examples from the Statfjord field, northern North Sea[J]. Marine and Petroleum Geology, 1999, 16(3): 259-281.
41 ALVES T M, CARTWRIGHT J A. Volume balance of a submarine landslide in the Espírito Santo Basin, offshore Brazil: quantifying seafloor erosion, sediment accumulation and depletion[J]. Earth and Planetary Science Letters, 2009, 288(3/4):572-580.
42 JOSE Frey-Martínez, CARTWRIGHT J, JAMES D. Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation[J]. Marine and Petroleum Geology, 2006, 23(5):585-604.
43 MOSCARDELLI L, WOOD L. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research, 2008,20(1):73-98.
44 MARTINEZ J F, CARTWRIGHT J, HALL B,et al. 3D seismic interpretation of slump complexes: examples from the continental margin of Israel[J]. Basin Research, 2005, 17(1):83-108.
45 SUN Meijing, GAO Hongfang, LI Xuejie, et al. Sedimentary evolution characteristics since late Miocene in the Huatung Basin[J]. Haiyang Xuebao, 2020, 42(1):154-162.
孙美静,高红芳,李学杰,等.花东盆地晚中新世以来沉积演化特征[J].海洋学报,2020,42(1):154-162.
46 HAMPTON M A, LEE H J, LOCAT J, et al. Submarine landslides[J]. Reviews of Geophysics, 1996, 34(1):33-59.
47 ROSENTHAL Y, HOLBOURN A E, KULHANEK D K,et al. Expedition 363 scientific prospectus: western Pacific Warm Pool[J]. Proceedings of the International Ocean Discovery Program, 2016. DOI:10.14379/iodp.sp.363.2016 .
48 SZCZEPAN J, POREBSKI S J, STEEL R J. Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands[J]. Earth-Science Reviews, 2003, 62(3/4): 283-326.
49 XU Qiang, WANG Yingmin, Ming LÜ, et al. Identification of shelf margin delta in sequence stratigraphic frameworks and its significance: a case study of the Baiyun Sag, South China Sea[J]. Oil and Gas Geology, 2011, 32(5): 733-742.
徐强, 王英民, 吕明, 等. 陆架边缘三角洲在层序地层格架中的识别及其意义——以南海白云凹陷为例[J]. 石油与天然气地质, 2011, 32(5): 733-742.
[1] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[2] 姚海涛,赵志中,王书兵,乔彦松,李朝柱,傅建利,王燕,蒋复初. 攀西地区晚新生代沉积研究回顾与问题讨论[J]. 地球科学进展, 2007, 22(5): 504-514.
[3] 彭建兵;马润勇;卢全中;李喜安;邵铁全. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 2004, 19(3): 457-466.
阅读次数
全文


摘要