地球科学进展 ›› 2022, Vol. 37 ›› Issue (3): 277 -289. doi: 10.11867/j.issn.1001-8166.2021.097

“东南亚构造、沉积与资源环境效应”专辑 上一篇    下一篇

帝汶海槽构造与地震特征对深部板块的约束
魏新元 1( ), 栾锡武 2( ), 孟凡顺 1, 冉伟民 3, 鲁银涛 4, 刘泽璇 5, 王嘉 1, 胡庆 2, 张丹丹 6   
  1. 1.中国海洋大学 海洋地球科学学院,山东 青岛 266100
    2.山东科技大学 地球科学与工程学院,山东 青岛 266590
    3.中国地质调查局青岛海洋地质研究所,山东 青岛 266237
    4.中国石油 杭州地质研究院,浙江 杭州 310023
    5.东北石油大学 地球科学学院,黑龙江 大庆 163318
    6.青岛海洋科学与技术试点国家实验室,海洋矿产资源评价与探测 技术功能实验室,山东 青岛 266237
  • 收稿日期:2021-07-07 修回日期:2021-10-14 出版日期:2022-03-10
  • 通讯作者: 栾锡武 E-mail:weixy08@qq.com;xluan@sdust.edu.cn
  • 基金资助:
    国家自然科学基金项目“孟加拉湾东北部沉积过程与特提斯东段构造变形耦合关系”(92055211);中国—东盟海上合作基金项目“中国—东盟海洋地震数据平台与研究中心建设”(12120100500017001)

Characteristics of Tectonics and Earthquakes in the Timor Trough and Its Constraints on the Deep Plates

Xinyuan WEI 1( ), Xiwu LUAN 2( ), Fanshun MENG 1, Weimin RAN 3, Yintao LU 4, Zexuan LIU 5, Jia WANG 1, Qing HU 2, Dandan ZHANG 6   

  1. 1.College of Marine Geosciences,Ocean University of China,Qingdao 266100,China
    2.College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China
    3.Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266237,China
    4.Research Institute of Petroleum Exploration & Development,Hangzhou 310023,China
    5.School of Earth Sciences,Northeast Petroleum University,Daqing Heilongjiang 163318,China
    6.Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology (Qingdao),Qingdao 266237,China
  • Received:2021-07-07 Revised:2021-10-14 Online:2022-03-10 Published:2022-04-14
  • Contact: Xiwu LUAN E-mail:weixy08@qq.com;xluan@sdust.edu.cn
  • About author:WEI Xinyuan (1995-), male, Jinan City, Shandong Province, Ph. D student. Research areas include seismic interpretation and tectonic evolution of continental margin. E-mail: weixy08@qq.com
  • Supported by:
    the National Natural Science Foundation of China "The coupling relationship between the sedimentary process in the northeastern bay of Bengal and orogenic movement in the eastern Tethys"(92055211);China-ASEAN Maritime Cooperation Fund Project "China-ASEAN marine seismic data center"(12120100500017001)

帝汶海槽位于东南亚班达海与澳大利亚西北帝汶海之间的外班达岛弧,新近纪以来特别是晚中新世—晚上新世期间澳大利亚板块与班达岛弧的碰撞引发了帝汶岛的隆升和帝汶海槽的变形,影响了区域内的构造活动。澳大利亚西北大陆架边缘正断层主要控制了台地、地垒和地堑构造,帝汶海槽北部在弧—陆碰撞引发的帝汶岛隆升与海槽沉降双重作用下形成一系列逆冲和褶皱,海槽底部NE-SW向逆冲断层为海槽变形前锋,控制了海槽形态。构造特征与天然地震特征表明,澳大利亚板块与班达岛弧之间的班达俯冲带位于帝汶岛与内班达岛弧之间的翁拜海峡,以平均约62°的高角度俯冲,俯冲深度超过600 km,深部震源与上部震源之间存在明显的地震带间断,澳大利亚板块向东南亚板块下方的俯冲已逐渐减缓趋于停止,但由弧—陆碰撞引发的帝汶海槽与帝汶岛变形仍在持续,内班达岛弧正在沿班达海发生变形。在俯冲作用相对平衡的背景下,澳大利亚板块向东南亚板块下方的俯冲可能会转变为造山作用,未来内班达岛弧可能会隆升形成内、外班达岛弧双重造山带。

The Timor Trough is located at the boundary of the Eurasian and the Australian plates, in the outer Banda Arc between the Banda Sea in Southeast Asia and the Timor Sea in northwest Australia. Since the Neogene, especially from the Late Miocene to the Late Pliocene, the collision between the Australian continent and the Banda Arc caused the uplift of Timor Island and the deformation of the Timor Trough, which affected the regional tectonic activities. A series of normal faults developed at the margin of the Australian Northwest shelf, which mainly controls the platform, horst, and graben features. The northern Timor Trough formed a series of thrust faults under the dual effect of the uplift of Timor Island and subsidence of the Timor Trough caused by arc continental collision. The NE-SW thrust fault at the bottom of the Timor Trough is the deformation front that controls the shape of the trough. The characteristics of tectonics and earthquakes indicate that the Banda subduction zone between the Australian Plate and Banda Arc is located in the Ombai Strait, which is between Timor Island and the inner Banda Arc, subducting at an average high angle of approximately 62° at a depth of more than 600 km. The subduction angle in the south is larger than that in the north, which is related to the compression of the Indian Ocean subduction plate. The front oceanic crust subducted below the northwest Banda Sea showed a horizontal trend below 500 km. There is an obvious discontinuity in the earthquakes between the deep and upper focus zones. The subduction of the Australian Plate beneath the Southeast Asian Plate may have gradually slowed down and stopped; however, the deformation of Timor Island and the Timor Trough caused by arc continental collision continues. The inner Banda Arc is deforming along the Banda Sea. Under the background of relatively balanced subduction, the subduction of the Australian Plate beneath the Southeast Asian Plate may have transformed into an orogeny. In the future, the inner Banda Arc may be uplifted to form an inner and outer Banda Arc double orogenic belt.

中图分类号: 

图1 帝汶海槽—班达岛弧二维地震测线位置(a)与天然地震分布及主要断裂带(b)(据参考文献[ 18 - 19 ]修改)
Fig. 1 Location of 2D seismic dataaand distribution of earthquakesbin Timor Trough-Banda Arcmodified after references18-19])
图2 帝汶海槽地层与DSDP-262钻井地层(据参考文献[ 19 ]修改,DSDP-262数据来源于参考文献[ 20 ])
Fig. 2 Stratigraphy of the Timor Trough and DSDP-262modified after reference 19 ], DSDP-262 data derived from reference 20 ])
图3 帝汶海槽—班达岛弧构造位置与主要构造活动(据参考文献[ 18 - 19 23 - 27 ]修改)
Fig. 3 Tectonic location of Timor Trough-Banda Arc and main tectonic activitiesmodified after references18-1923-27])
图4 帝汶海槽构造特征地震剖面[剖面位置见图1a)]
Fig. 4 Seismic profile of tectonic characteristics in the Timor Troughsee Fig.1afor location
图5 帝汶海槽正断层特征剖面[剖面位置见图1a)]
(a)东帝汶海槽地震与解释剖面;(b)西帝汶海槽地震与解释剖面(地震数据来源于参考文献[ 30 ])
Fig. 5 Seismic profiles of normal fault characteristics in the Timor Troughsee Fig.1afor location
(a) Seismic and interpretation profiles of the east Timor Trough; (b) Seismic and interpretation profiles of the west Timor Trough (seismic data derived from reference [ 30 ])
图6 帝汶海槽逆冲断层特征剖面[剖面位置见图1a)]
(a)东帝汶海槽地震与解释剖面;(b)西帝汶海槽地震与解释剖面(地震数据来源于参考文献[ 31 ])
Fig. 6 Seismic profiles of thrust fault characteristics in the Timor Troughsee Fig.1afor location
(a) Seismic and interpretation profiles of the east Timor Trough; (b) Seismic and interpretation profiles of the west Timor Trough (seismic data derived from reference [ 31 ])
表 1 帝汶海槽—班达岛弧天然地震震源深度与震级分级统计表
Table 1 Classification and statistical table of focus depth and magnitude from Timor Trough to Banda Arc
图7 帝汶海槽—班达岛弧天然地震纵向分布特征与P波走时层析成像
E1~E6为天然地震分布剖面,测线位置见图1(b);(a)500 km深度P波波速异常 32 ;(b)帝汶海—班达海层析成像剖面 16 [位置见图7(a)红色线]
Fig. 7 Vertical distribution characteristics of earthquakes and P-wave travel time tomography in the Timor Trough-Banda Arc
E1~E6 are earthquakes distribution profiles, see Fig.1(b) for location; (a) P-wave wave-speed anomalies tomographic slices at 500 km depth 32 ; (b) Timor sea-Banda sea tomographic profile 16 [see Fig. 7(a) red line for location]
表 2 帝汶海槽—班达岛弧天然地震分布剖面规律统计表
Table 2 Statistical table of distribution of earthquakes from Timor Trough to Banda Arc
图8 帝汶海槽逆冲、挤压变形特征地震剖面[剖面位置见图1a)]
(a)东帝汶海槽地震剖面;(b)西帝汶海槽地震剖面(地震数据来源于参考文献[ 31 ])
Fig. 8 Characteristics of thrust and compressional deformation seismic profiles in the Timor Troughsee Fig. 1afor location
(a) Seismic profile of the east Timor Trough; (b) Seismic profile of the west Timor Trough (seismic data derived from reference [ 31 ])
图9 帝汶海槽—班达岛弧逆冲震源机制与板块俯冲模式
(a)帝汶海槽—班达岛弧震源机制分布与板块俯冲模式;(b)内班达岛弧逆冲震源机制分布剖面;(c)图(a)的位置
Fig. 9 Focal mechanism of thrust fault from Timor Trough to Banda Arc and plate subducting model
(a) Distribution of focal mechanism and plate subduction model of the Timor Trough-Banda Arc; (b) Profile of thrust focal mechanism in the inner Banda Arc; (c) Location of Fig. 9(a)
1 ZHANG Peizhen, DENG Qidong, ZHANG Zhuqi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 2013, 43(10): 1 607-1 620.
张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 2013, 43(10): 1 607-1 620.
2 LIN Jian, XU Min, ZHOU Zhiyuan, et al. Ocean drilling investigation of the global subduction processes[J]. Advances in Earth Science, 2017, 32(12): 1 253-1 266.
林间, 徐敏, 周志远, 等. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1 253-1 266.
3 AUDLEY-CHARLES M G. Rates of Neogene and Quaternary tectonic movements in the Southern Banda Arc based on micropalaeontology[J]. Journal of the Geological Society, 1986, 143(1): 161-175.
4 MCCAFFREY R. Active tectonics of the eastern Sunda and Banda Arcs[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B12): 15 163-15 182.
5 SNYDER D B, PRASETYO H, BLUNDELL D J, et al. A dual doubly vergent orogen in the Banda Arc continent-arc collision zone as observed on deep seismic reflection profiles[J]. Tectonics, 1996, 15(1): 34-53.
6 TANDON K, LORENZO J M, O'BRIEN G W. Effective elastic thickness of the northern Australian continental lithosphere subducting beneath the Banda orogen (Indonesia): inelastic failure at the start of continental subduction[J]. Tectonophysics, 2000, 329(1/2/3/4): 39-60.
7 AUDLEY-CHARLES M G. Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope[J]. Tectonophysics, 2004, 389(1/2): 65-79.
8 HARROWFIELD M, KEEP M. Tectonic modification of the Australian North-West Shelf: episodic rejuvenation of long-lived basin divisions[J]. Basin Research, 2005, 17(2): 225-239.
9 SPAKMAN W, HALL R. Surface deformation and slab-mantle interaction during Banda arc subduction rollback[J]. Nature Geoscience, 2010, 3(8): 562-566.
10 ZIMMERMANN S, HALL R. Provenance of Triassic and Jurassic sandstones in the Banda Arc: petrography, heavy minerals and zircon geochronology[J]. Gondwana Research, 2016, 37: 1-19.
11 ZIMMERMANN S, HALL R. Provenance of Cretaceous sandstones in the Banda Arc and their tectonic significance [J]. Gondwana Research, 2019, 67: 1-20.
12 KEEP M, HAIG D W. Deformation and exhumation in Timor: distinct stages of a young orogeny[J]. Tectonophysics, 2010, 483(1/2): 93-111.
13 HALL R, COTTAM M A, WILSON M E J. The SE Asian gateway: history and tectonics of the Australia-Asia collision[J]. Geological Society London Special Publications, 2011, 355(1): 1-6.
14 POWNALL J M, HALL R, ARMSTRONG R A, et al. Earth's youngest known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia[J]. Geology, 2014, 42(4): 279-282.
15 POWNALL J M. UHT metamorphism on Seram, eastern Indonesia: reaction microstructures and P-T evolution of spinel-bearing garnet-sillimanite granulites from the Kobipoto Complex[J]. Journal of Metamorphic Geology, 2015, 33(9): 909-935.
16 HALL R, SPAKMAN W. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics, 2015, 658: 14-45.
17 CHARLTON T R. Neogene plate tectonic evolution of the Banda Arc[C]//Proceedings, Indonesian petroleum association fortieth annual convention & exhibition. Jakarta: Indonesian Petroleum Association (IPA), 2016: IPA16-21-G.
18 SAQAB M M, BOURGET J, TROTTER J, et al. New constraints on the timing of flexural deformation along the northern Australian margin: implications for arc-continent collision and the development of the Timor Trough[J]. Tectonophysics, 2017, 696/697: 14-36.
19 KEEP M, HARROWFIELD M, CROWE W. The Neogene tectonic history of the North West Shelf, Australia[J]. Exploration Geophysics, 2007, 38(3): 151-174.
20 JAMES R H, JOHN J V, HANS M B, et al. Deep Sea Drilling Program Site 262 report[R]. Woods Hole: Deep Sea Drilling Project, 1972: 193-210.
21 ZHU Jieshou, CAO Jiamin, CAI Xuelin, et al. The structure of lithosphere in Eurasia and west Pacific[J]. Advances in Earth Science, 2004, 19(3): 387-392.
朱介寿, 曹家敏, 蔡学林, 等. 欧亚大陆及西太平洋边缘海岩石圈结构[J]. 地球科学进展, 2004, 19(3): 387-392.
22 SHAO Tongbin, JI Shaocheng. Earthquakes mechanism of subduction zones: a state-of-the-art overview[J]. Geological Review, 2015, 61(2): 245-268.
邵同宾, 嵇少丞. 俯冲带地震诱发机制:研究进展综述[J]. 地质论评, 2015, 61(2): 245-268.
23 HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570/571: 1-41.
24 HALL R. Southeast Asia: new views of the geology of the Malay Archipelago[J]. Annual Review of Earth and Planetary Sciences, 2017, 45(1): 331-358.
25 WILSON P, RAIS J, REIGBER C, et al. Study provides data on active plate tectonics in southeast Asia region[J]. Eos Transactions American Geophysical Union, 1998, 79(45): 545-549.
26 RANGIN C, PICHON X L, MAZZOTTI S, et al. Plate convergence measured by GPS across the Sundaland/Philippine sea plate deformed boundary: the Philippines and eastern Indonesia[J]. Geophysical Journal International, 1999, 139(2): 296-316.
27 SIMONS W J F, SOCQUET A, VIGNY C, et al. A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B6): B06420.
28 HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
29 WEI Xinyuan, LUAN Xiwu, RAN Weimin, et al. Fault characteristics and tectonic evolution model of the East Timor Trough[J]. Geological Bulletin of China, 2021, 40(2/3): 364-375.
魏新元, 栾锡武, 冉伟民, 等. 东帝汶海槽断裂特征与构造演化模式[J]. 地质通报, 2021, 40(2/3): 364-375.
30 BAILLIE P, MILNE C. New insights into prospectivity and tectonic evolution of the Banda Arc: evidence from broadband seismic data[C]//Proceedings, Indonesian Petroleum Association thirty-eighth annual convention & exhibition. Jakarta: Indonesian Petroleum Association (IPA), 2016: IPA14-G-100.
31 BAILLIE P, GREGOR D, CHRISTIAN M. Geological development of the western end of the Timor Trough[C]//Proceedings of the 2013 South East Asia petroleum exploration society conference. Singapore: Southeast Asia Petroleum Exploration Society, 2016: 1-46.
32 SMITH W H F, SANDWELL D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5 334): 1 956-1 962.
33 HALL R. The subduction initiation stage of the Wilson cycle[C]//WILSON R W. Fifty years of the wilson cycle concept in plate tectonics, 470. London: Geological Society, 2019: 415-438.
34 HAIG D W, MCCARTAIN E. Carbonate pelagites in the post-Gondwana succession (Cretaceous-Neogene) of East Timor[J]. Australian Journal of Earth Sciences, 2007, 54(6): 875-897.
35 TATE G W, MCQUARRIE N, HINSBERGEN D J J VAN, et al. Australia going down under: quantifying continental subduction during arc-continent accretion in Timor-Leste[J]. Geosphere, 2015, 11(6): 1 860-1 883.
36 HEINE C, MÜLLER R D. Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration[J]. Australian Journal of Earth Sciences, 2005, 52(1): 27-39.
37 HEINE C, QUEVEDO L, MCKAY H, et al. Plate tectonic consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere[C]//Eastern Australian Basins symposium IV. Brisbane, Australia, 2012: 1-10.
38 PRYER L, BLEVIN J, NELSON G, et al. Structural architecture and basin evaluation of the North West Shelf[J]. The APPEA Journal, 2014, 54(2): 474.
39 PORRITT R W, MILLER M S, O'DRISCOLL L J, et al. Continent-arc collision in the Banda Arc imaged by ambient noise tomography[J]. Earth and Planetary Science Letters, 2016, 449: 246-258.
40 HILTON D R, CRAIG H. A helium isotope transect along the Indonesian archipelago[J]. Nature, 1989, 342(6 252): 906-908.
41 HILTON D R, HOOGEWERFF J A, BERGEN M J VAN, et al. Mapping magma sources in the east Sunda-Banda arcs, Indonesia: constraints from helium isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(2): 851-859.
42 VROON P Z, BERGEN M J VAN, KLAVER G J, et al. Strontium, neodymium, and lead isotopic and trace-element signatures of the East Indonesian sediments: provenance and implications for Banda arc magma genesis[J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2 573-2 598.
43 HERRINGTON R J, SCOTNEY P M, ROBERTS S, et al. Temporal association of arc-continent collision, progressive magma contamination in arc volcanism and formation of gold-rich massive sulphide deposits on Wetar Island (Banda Arc)[J]. Gondwana Research, 2011, 19(3): 583-593.
44 WILLE M, NEBEL O, PETTKE T, et al. Molybdenum isotope variations in calc-alkaline lavas from the Banda arc, Indonesia: assessing the effect of crystal fractionation in creating isotopically heavy continental crust[J]. Chemical Geology, 2018, 485: 1-13.
45 NEBEL O, VROON P Z, WESTRENEN W VAN, et al. The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 240-250.
46 NUGROHO H, HARRIS R, LESTARIYA A W, et al. Plate boundary reorganization in the active Banda Arc-continent collision: insights from new GPS measurements[J]. Tectonophysics, 2009, 479(1/2): 52-65.
47 PORRITT R. Highly variable structure along the Banda arc imaged by ambient noise tomography[C]//AGU fall meeting abstracts. USA: San Francisco, 2015.
48 BAI Ling, SONG Bowen, LI Guohui,et al. Seismic activity in the Himalayan orogenic belt and its related geohazards[J]. Advances in Earth Science, 2019, 34(6): 629-639.
白玲, 宋博文, 李国辉, 等. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[3] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[4] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[5] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[6] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[7] 李江海,侯贵廷,刘守偈. 早期碰撞造山过程与板块构造:前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
[8] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[9] 王利;周祖翼. 发震带试验(SEIZE)[J]. 地球科学进展, 2005, 20(8): 823-832.
[10] 刘宝珺,李廷栋. 地质学的若干问题[J]. 地球科学进展, 2001, 16(5): 607-616.
[11] 陈晋阳. 地幔对流与板块构造的研究进展[J]. 地球科学进展, 2001, 16(4): 587-589.
[12] 郑永飞,李曙光,陈江峰. 化学地球动力学[J]. 地球科学进展, 1998, 13(2): 121-128.
[13] 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3): 234-239.
[14] 方国庆; 张晓宝. 板块沉积学[J]. 地球科学进展, 1993, 8(4): 80-82.
[15] 柯保嘉. 构造沉积学[J]. 地球科学进展, 1992, 7(2): 82-.
阅读次数
全文


摘要