地球科学进展 ›› 1998, Vol. 13 ›› Issue (2): 121 -128. doi: 10.11867/j.issn.1001-8166.1998.02.0121

干旱气候变化与可持续发展 上一篇    下一篇

化学地球动力学
郑永飞,李曙光,陈江峰   
  1. 中国科学技术大学地球和空间科学系 合肥 230026
  • 收稿日期:1997-11-15 修回日期:1997-12-20 出版日期:1998-04-01
  • 通讯作者: 郑永飞

CHEMICAL GEODYNAMICS

Zheng Yongfei,Li Shuguang,Chen Jiangfeng   

  1. Department of Earth and Space Sciences,University of Science and Technology of China, Hefei 230026
  • Received:1997-11-15 Revised:1997-12-20 Online:1998-04-01 Published:1998-04-01

化学地球动力学是地球化学的分支学科,它在研究地球内部化学组成和演化时,把地球视为一个完整的动力学系统而不是彼此孤立的地质集合体。它通过研究地球各层圈内部的化学结构和过程以及不同层圈之间的化学相互作用,从而从本质上研究和认识发生在地球内部的各种地质作用。简述了化学地球动力学研究在固体地球科学中的重要性,概括了化学地球动力学的特点和突出成果,分析了化学地球动力学研究的科学意义,并对在中国开展壳幔相互作用的化学地球动力学研究提出了建议。

Chemical geodynamics, developed as an integrated study of the chemical and physical structure and evolution of the solid Earth, is a field of inquiry that originally evolved from a marriage of mantle geochemistry and geophysics. Conceptually it treats the different spheres and parts of the Earth as a whole system rather than isolated ones. Advance in the theory of plate tectonics has made it the forefront of modern geochemistry. It deals with the chemical composition of different spheres within the Earth and interactions between them, so that various geological processes within the Earth can be recognized substantially. This paper briefly introduces the importance of chemical geodynamics in solid Earth sciences, generalizes the features and outstanding achievements of chemical geodynamics since its birth, and highlights the scientific significance of chemical geodynamics studies. It is proposed that China has its own advantage to conduct high-level research in the chemical geodynamics of crust-mantle interaction and the Qinling-Dabie-Sulu or ogenic belt is a very important target for this purpose.

中图分类号: 

[1] Gast P W. Limitations on the composition of the upper mantle. J Geophys Res, 1960, 65: 1287~1297.
[2] Allegre C J. Isotope geodynamics. Earth Planet Sci Lett, 1987, 86:175~03.
[3] Hofmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385: 219~229.
[4] Hart S R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 1988,90: 273~296.
[5] DePaolo D J, Wasserburg G J. Nd-isotope variations and petrogenetic models. Geophys Res Lett, 1976, 3: 249~252.
[6] O'Nions R K, Hamilton P J, Evensen N M. Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet Sci Lett, 1977, 34: 13~22.
[7] Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust.Earth Planet Sci Lett, 1988, 90: 297~314.
[8] Condie K C. Origin of the Earth's crust. Paleogeogr Paleoclimat Paleoecol, 1989, 75: 57~81.
[9] Taylor S R, McLennan S M. The geochemical evolution of the continental crust. Rev Geophys, 1995, 33: 241~265.
[10] Allegre C J. Chemical geodynamics. Tectonophysics, 1982, 81:109~132.
[11] Zindler A, Hart S R. Chemical Geodynamics. Am Rev Earth Planet Sci, 1986, 14: 493~571.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[4] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[5] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[6] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[7] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[8] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[9] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[10] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[11] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[12] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[13] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[14] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[15] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
阅读次数
全文


摘要