1 |
Qiu J. China faces up to groundwater crisis[J]. Nature, 2010,466(7 304): 308.
|
2 |
Zheng C, Liu J. China's "Love Canal" moment?[J]. Science, 2013,340(6 134): 810.
|
3 |
Tai Tuoya, Wang Jinsheng, Wang Yeyao, et al. Groundwater pollution risk assessments in China [J]. Journal of Beijing Normal University (Natural Science), 2012,48(6): 648-653.
|
|
邰托娅, 王金生, 王业耀, 等. 我国地下水污染风险评价方法研究进展[J]. 北京师范大学学报:自然科学版, 2012,48(6): 648-653.
|
4 |
Yu Yong, Zhai Yuanzheng, Guo Yongli, et al. Risk assessment of groundwater pollution based on uncertainty [J]. Hydrogeology & Engineering Geology, 2013,40(1): 115-123.
|
|
于勇, 翟远征, 郭永丽, 等. 基于不确定性的地下水污染风险评价研究进展[J]. 水文地质工程地质, 2013,40(1): 115-123.
|
5 |
Zhang Bo, Li Guoxiu, Cheng Pin, et al. Groundwater environment risk assessment based on stochastic theory [J]. Advances in Water Science, 2016,27(1): 100-106.
|
|
张博, 李国秀, 程品, 等. 基于随机理论的地下水环境风险评价[J]. 水科学进展, 2016,27(1): 100-106.
|
6 |
Fiori A, Bellin A, Cvetkovic V, et al. Stochastic modeling of solute transport in aquifers: From heterogeneity characterization to risk analysis[J]. Water Resources Research, 2015,51(8): 6 622-6 648.
|
7 |
Kumar P. Hydrocomplexity: Addressing water security and emergent environmental risks[J]. Water Resources Research, 2015,51(7): 5 827-5 838.
|
8 |
Garabedian S P, LeBlanc D R, Gelhar L W, et al. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 2. Analysis of spatial moments for a nonreactive tracer[J]. Water Resources Research, 1991,27(5): 911-924.
|
9 |
Binley A, Hubbard S S, Huisman J A, et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales[J]. Water Resources Research, 2015,51(6): 3 837-3 866.
|
10 |
Pereira Nunes J P, Blunt M J, Bijeljic B. Pore-scale simulation of carbonate dissolution in micro-CT images[J]. Journal of Geophysical Research: Solid Earth, 2016,121(2): 558-576.
|
11 |
Robins V, Saadatfar M, Delgado-Friedrichs O, et al. Percolating length scales from topological persistence analysis of micro-CT images of porous materials[J]. Water Resources Research, 2016,52(1): 315-329.
|
12 |
Kitanidis P K. The concept of the Dilution Index[J]. Water Resources Research, 1994,30(7): 2 011-2 026.
|
13 |
Chiogna G, Hochstetler D L, Bellin A, et al. Mixing, entropy and reactive solute transport[J]. Geophysical Research Letters, 2012,39(20): L20405. DOI:10.1029/2012GL053295.
doi: 10.1029/2012GL053295
|
14 |
de Barros F P J, Dentz M, Koch J, et al. Flow topology and scalar mixing in spatially heterogeneous flow fields[J]. Geophysical Research Letters, 2012,39(8): L08404. DOI:10.1029/2012GL051302.
doi: 10.1029/2012GL051302
|
15 |
Le Borgne T, Dentz M, Villermaux E. Stretching, coalescence, and mixing in Porous Media[J]. Physical Review Letters, 2013,110(20): 204 501.
|
16 |
Dentz M, de Barros F P J. Mixing-scale dependent dispersion for transport in heterogeneous flows[J]. Journal of Fluid Mechanics, 2015,777: 178-195.
|
17 |
Le Borgne T, Dentz M, Villermaux E. The lamellar description of mixing in porous media[J]. Journal of Fluid Mechanics, 2015,770: 458-498.
|
18 |
Lester D R, Dentz M, Le Borgne T. Chaotic mixing in three-dimensional porous media[J]. Journal of Fluid Mechanics, 2016,803: 144-174.
|
19 |
Soltanian M R, Ritzi R W, Dai Z, et al. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach[J]. Chemosphere, 2015,122: 235-244.
|
20 |
Soltanian M R, Ritzi R W, Huang C C, et al. Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance[J]. Water Resources Research, 2015,51(3): 1 601-1 618.
|
21 |
Xie S, Wen Z, Jakada H. A new model approach for reactive solute transport in dual-permeability media with depth-dependent reaction coefficients[J]. Journal of Hydrology, 2019,577: 123 946.
|
22 |
Dagan G, Fiori A, Jankovic I. Upscaling of flow in heterogeneous porous formations: Critical examination and issues of principle[J]. Advances in Water Resources, 2013,51: 67-85.
|
23 |
Norouzi A, Pourvari S, Arns C H. Image-based relative permeability upscaling from the pore scale[J]. Advances in Water Resources, 2016,95: 161-175.
|
24 |
Tyukhova A R, Willmann M. Conservative transport upscaling based on information of connectivity[J]. Water Resources Research, 2016,52(9): 6 867-6 880.
|
25 |
Aguilar-Madera C G, Herrera-Hernández E C, Espinosa-Paredes G. Solute transport in heterogeneous reservoirs: Upscaling from the Darcy to the reservoir scale[J]. Advances in Water Resources, 2019,124: 9-28.
|
26 |
Rajaram H. Debates—Stochastic subsurface hydrology from theory to practice: Introduction[J]. Water Resources Research, 2016,52(12): 9 215-9 217.
|
27 |
Dong W, Xie W, Su X, et al. Review: Micro-organic contaminants in groundwater in China[J]. Hydrogeology Journal, 2018,26(5): 1 351-1 369.
|
28 |
Jia Y, Xi B, Jiang Y, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of the Total Environment, 2018,643: 967-993.
|
29 |
Teng Y, Hu B, Zheng J, et al. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China[J]. Hydrogeology Journal, 2018,26(5): 1 591-1 607.
|
30 |
Zhao Wenzhi, Zhou Hong, Liu Hu. Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics [J]. Advances in Earth Science, 2017,32(9): 908-918.
|
|
赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017,32(9): 908-918.
|
31 |
Wang Wenke, Gong Chengcheng, Zhang Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions [J]. Advances in Earth Science, 2018,33(7): 702-718.
|
|
王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018,33(7): 702-718.
|
32 |
Wang Y, Zheng C, Ma R. Review: Safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018,26(5): 1 301-1 324.
|
33 |
Wang Sijia, Liu Hu, Zhao Wenzhi, et al. Groundwater sustainability in arid and semi-arid environments: A review [J]. Advances in Earth Science, 2019,34(2): 210-223.
|
|
王思佳, 刘鹄, 赵文智, 等. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019,34(2): 210-223.
|
34 |
Yeh T-C J, Simunek J. Stochastic fusion of information for characterizing and monitoring the vadose zone[J]. Vadose Zone Journal, 2002,1(2): 207-221.
|
35 |
Hou Z S, Rubin Y. On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward modeling[J]. Water Resources Research, 2005,41(12): W12425. DOI:10.1029/2005WR004082.
doi: 10.1029/2005WR004082
|
36 |
Vereecken H, Huisman J A, Bogena H, et al. On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research, 2008,44(4). DOI:10.1029/2008WR006829.
doi: 10.1029/2008WR006829
|
37 |
Arora B, Dwivedi D, Faybishenko B, et al. Understanding and predicting vadose zone processes [M]//Reactive Transport in Natural and Engineered Systems. Berlin, Boston: De Gruyter, 2019.
|
38 |
Merritt A J, Chambers J E, Wilkinson P B, et al. Measurement and modelling of moisture—Electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy[J]. Journal of Applied Geophysics, 2016,124: 155-165.
|
39 |
Wehrer M, Binley A, Slater L D. Characterization of reactive transport by 3-D Electrical Resistivity Tomography (ERT) under unsaturated conditions[J]. Water Resources Research, 2016,52(10): 8 295-8 316.
|
40 |
Kotikian M, Parsekian A D, Paige G, et al. Observing heterogeneous unsaturated flow at the hillslope scale using time-lapse electrical resistivity tomography[J]. Vadose Zone Journal, 2019,18(1): 180 138.
|
41 |
Koltermann C E, Gorelick S M. Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches[J]. Water Resources Research, 1996,32(9): 2 617-2 658.
|
42 |
Ritzi R W, Dai Z X, Dominic D F, et al. Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture[J]. Water Resources Research, 2004,40(3): W03513.DOI:10.1029/2003WR002420.
doi: 10.1029/2003WR002420
|
43 |
Pirot G, Renard P, Huber E, et al. Influence of conceptual model uncertainty on contaminant transport forecasting in braided river aquifers[J]. Journal of Hydrology, 2015,531: 124-141.
|
44 |
Neuman S P, Di Federico V. Multifaceted nature of hydrogeologic scaling and its interpretation[J]. Reviews of Geophysics, 2003,41(3): 1 014.
|
45 |
Zarlenga A, Jankovic I, Fiori A. Advective transport in heterogeneous formations: The impact of spatial anisotropy on the breakthrough curve[J]. Transport in Porous Media, 2013,96(2): 295-304.
|
46 |
Di Dato M, de Barros F P J, Fiori A, et al. Effects of the hydraulic conductivity microstructure on macrodispersivity[J]. Water Resources Research, 2016,52(9): 6 818-6 832.
|
47 |
Finkel M, Grathwohl P, Cirpka O A. A travel-time based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies[J]. Water Resources Research, 2016,52(12): 9 390-9 411.
|
48 |
Yang Jinzhong, Cai Shuying, Huang Guanhua, et al. Stochastic Theory of Water and Solute Transport in Porous Media [M]. Beijing: Science Press, 2000.
|
|
杨金忠, 菜树英, 黄冠华, 等. 多孔介质中水分及溶质迁移的随机理论[M]. 北京: 科学出版社, 2000.
|
49 |
Wu Jichun, Lu Le. Uncertainty analysis for groundwater modeling [J]. Journal of Nanjing University(Natural Sciences), 2011,(3): 227-234.
|
|
吴吉春, 陆乐. 地下水模拟不确定性分析[J]. 南京大学学报:自然科学版, 2011,(3): 227-234.
|
50 |
Zhou Haiyan. Characterizing Non-Gaussian Aquifer Model Parameters Based on the Ensemble Kalman Filter [D]. Beijing: China University of Geosciences (Beijing), 2012.
|
|
周海燕. 基于集合卡尔曼滤波法的非高斯含水层参数识别[D].北京:中国地质大学(北京), 2012.
|
51 |
Qin Ronggao, Cao Guangzhu, Wu Yanqing. Review of the study of groundwater flow and solute transport in heterogeneous aquifer [J]. Advances in Earth Science, 2014,29(1): 30-41.
|
|
覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014,29(1): 30-41.
|
52 |
You Mingyu, Qin Ronggao, Cao Guangzhu, et al. Heterogeneous distribution of the aquifer sediments in an alluvial fan of Dali, Yunnan [J]. Geology and Exploration, 2016,52(4): 734-742.
|
|
由明宇, 覃荣高, 曹广祝, 等. 大理冲积扇含水层非均质性分布规律研究[J]. 地质与勘探, 2016,52(4): 734-742.
|
53 |
Kechavarzi C, Soga K, Illangasekare T H. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone[J]. Journal of Contaminant Hydrology, 2005,76(3/4): 211-233.
|
54 |
Demirkanli D I, Molz F J, Kaplan D I, et al. A fully transient model for long-term plutonium transport in the Savannah River Site vadose zone: Root water uptake[J]. Vadose Zone Journal, 2008,7(3): 1 099-1 109.
|
55 |
Peng W, Quinlan P, Tartakovsky D M. Effects of spatio-temporal variability of precipitation on contaminant migration in the vadose zone[J]. Geophysical Research Letters, 2009,36(12): L12404.
|
56 |
Faybishenko B,Witherspoon P A,Doughty C,et al. Multi-scale investigations of liquid flow in a fractured basalt vadose zone[M]//Evans D D, Nicholson T J, Rassmusen T. Flow and Transport Through Unsaturated Fractured Rock. Washington DC: American Geophysical Union,2013:161-182.
|
57 |
Orozco-Lopez E, Munoz-Carpena R, Gao B, et al. Riparian vadose zone preferential flow: Review of concepts, limitations, and perspectives[J]. Vadose Zone Journal, 2018,17(1). DOI:10.2136/vzj2018.02.0031.
doi: 10.2136/vzj2018.02.0031
|
58 |
Tang Haihang, Su Yishen, Liu Bingao. Laboratory study for influence of air on the infiltration flow in the soil unsaturated zone [J]. Advances in Water Science, 1995,6(4): 263-269.
|
|
唐海行, 苏逸深, 刘炳敖. 土壤包气带中气体对入渗水流运动影响的实验研究[J]. 水科学进展, 1995,6(4): 263-269.
|
59 |
Yang Yonggang, Li Guoqin, Jiao Wentao, et al. Migration process of soil water in the unsaturated zone of the Loess Plateau [J]. Advances in Water Science, 2016,27(4): 529-534.
|
|
杨永刚, 李国琴, 焦文涛, 等. 黄土高原丘陵沟壑区包气带土壤水运移过程[J]. 水科学进展, 2016,27(4): 529-534.
|
60 |
Chen Zifang, Zhao Yongsheng, Sun Jiaqiang, et al. Study on the migration and release of lead and chromium and in the vadose zone [J]. China Environmental Science, 2014,34(9): 2 211-2 216.
|
|
陈子方, 赵勇胜, 孙家强, 等. 铅和铬污染包气带及再释放规律的实验研究[J]. 中国环境科学, 2014,34(9): 2 211-2 216.
|
61 |
Wang Xiaodan, Feng Wei, Wang Wenke, et al. Migrating and transforming rule of nitrogen in unsaturated zone in Guanzhong basin based on HYDRUS-1D model [J]. Geological Survey and Research, 2015,38(4): 291-298, 304.
|
|
王小丹, 凤蔚, 王文科, 等. 基于HYDRUS-1D模型模拟关中盆地氮在包气带中的迁移转化规律[J]. 地质调查与研究, 2015,38(4): 291-298, 304.
|
62 |
Zhao Kefeng, Wang Jinguo, Huang Qian, et al. Study on migration rate of LNAPL in vadose zone [J]. Geotechnical Investigation & Surveying, 2016,44(3): 34-41.
|
|
赵科锋, 王锦国, 黄倩, 等. 包气带中轻非水相流体运移速率的研究[J]. 工程勘察, 2016,44(3): 34-41.
|
63 |
Meng Xiangshuai, Wu Mengmeng, Chen Honghan, et al. Vertical pollution characteristics and sources of polycyclic aromatic hydrocarbons in a heterogeneous unsaturated zone under a coking plant [J]. Environmental Science, 2020,41(1): 377-384.
|
|
孟祥帅, 吴萌萌, 陈鸿汉, 等. 某焦化场地非均质包气带中多环芳烃(PAHs)来源及垂向分布特征[J]. 环境科学, 2020,41(1): 377-384.
|
64 |
Heidari P, Li L. Solute transport in low-heterogeneity sandboxes: The role of correlation length and permeability variance[J]. Water Resources Research, 2014,50(10): 8 240-8 264.
|
65 |
Yang M, Annable M D, Jawitz J W. Solute source depletion control of forward and back diffusion through low-permeability zones[J]. Journal of Contaminant Hydrology, 2016,193: 54-62.
|
66 |
Tyukhova A R, Willmann M. Connectivity metrics based on the path of smallest resistance[J]. Advances in Water Resources, 2016,88: 14-20.
|
67 |
Bijeljic B, Mostaghimi P, Blunt M J. Insights into non-Fickian solute transport in carbonates[J]. Water Resources Research, 2013,49(5): 2 714-2 728.
|
68 |
Li Guangquan, Gao Yang, Zhao Bei. Laboratory inversion for wall solute fluxes from breakthrough curves [J]. Geological Journal of China Universities, 2011,17(4): 546-551.
|
|
李光泉, 高阳, 赵蓓. 穿透曲线反演管壁溶质通量的实验研究[J]. 高校地质学报, 2011,17(4): 546-551.
|
69 |
Chen Yudao, Cheng Yaping, Wang Heng, et al. Quantitative tracing study of hydraulic and geometric parameters of a karst underground river: Exemplified by the Zhaidi underground river in Guilin [J]. Hydrogeology and Engineering Geology, 2013,40(5): 11-15.
|
|
陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪——以桂林寨底地下河为例[J]. 水文地质工程地质, 2013,40(5): 11-15.
|
70 |
Gallegos J J, Hu B X, Davis H. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP[J]. Hydrogeology Journal, 2013,21(8): 1 749-1 760.
|
71 |
Dentz M, Le Borgne T, Englert A, et al. Mixing, spreading and reaction in heterogeneous media: A brief review[J]. Journal of Contaminant Hydrology, 2011,120/121: 1-17.
|
72 |
Liu Y, Illangasekare T H, Kitanidis P K. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals[J]. Journal of Contaminant Hydrology, 2014,157: 11-24.
|
73 |
Henri C V, Fernandez-Garcia D, de Barros F P J. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels[J]. Water Resources Research, 2015,51(6): 4 086-4 108.
|
74 |
Ye Y, Chiogna G, Cirpka O A, et al. Experimental investigation of transverse mixing in porous media under helical flow conditions[J]. Physical Review E, 2016,94(1): 013113.
|
75 |
Le Borgne T, Huck P D, Dentz M, et al. Scalar gradients in stirred mixtures and the deconstruction of random fields[J]. Journal of Fluid Mechanics, 2017,812: 578-610.
|
76 |
Cvetkovic V, Fiori A, Dagan G. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer[J]. Journal of Hydrology, 2016,543: 101-108.
|
77 |
Russo D, Zaidel J, Laufer A. Numerical analysis of flow and transport in a combined heterogeneous vadose zone-groundwater system[J]. Advances in Water Resources, 2000,24(1): 49-62.
|
78 |
Russo D, Fiori A. Equivalent vadose zone steady state flow: An assessment of its capability to predict transport in a realistic combined vadose zone-groundwater flow system[J]. Water Resources Research, 2008,44(9): W09436. DOI:10.1029/2007WR006170.
doi: 10.1029/2007WR006170
|
79 |
Russo D, Fiori A. Stochastic analysis of transport in a combined heterogeneous vadose zone-groundwater flow system[J]. Water Resources Research, 2009,45: W03426. DOI:10.1029/2008WR007157.
doi: 10.1029/2008WR007157
|
80 |
Russo D. Effect of pulse release date and soil characteristics on solute transport in a combined vadose zone-groundwater flow system: Insights from numerical simulations[J]. Water Resources Research, 2011,47: W05532. DOI:10.1029/2008WR007157.
doi: 10.1029/2008WR007157
|
81 |
Murray C J, Zachara J M, McKinley J P, et al. Establishing a geochemical heterogeneity model for a contaminated vadose zone—Aquifer system[J]. Journal of Contaminant Hydrology, 2013,153: 122-140.
|
82 |
Akbariyeh S, Bartelt-Hunt S, Snow D, et al. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux[J]. Journal of Contaminant Hydrology, 2018,211: 15-25.
|
83 |
Beegum S, ?im?nek J, Szymkiewicz A, et al. Implementation of Solute Transport in the Vadose Zone into the “HYDRUS Package for MODFLOW”[J]. Groundwater, 2019,57(3): 392-408.
|
84 |
Broadbent S R, Hammersley J M. Percolation processes: I. Crystals and mazes[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1957,53(3): 629-641.
|
85 |
Feng Zengchao, Zhao Yangsheng, Zhaoxing Lü. Research on laws of 2D percolation of fully random distribution fracture media [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl.2): 3 904-3 908.
|
|
冯增朝, 赵阳升, 吕兆兴. 强随机分布裂隙介质的二维逾渗规律研究[J]. 岩石力学与工程学报, 2006,25(增刊2): 3 904-3 908.
|
86 |
Liu Shengli, Feng Huixia, Zhang Jianqiang, et al. The research of percolation theory and application [J]. Applied Chemical Industry, 2010, 39(7): 1 074-1 078.
|
|
刘生丽, 冯辉霞, 张建强, 等. 逾渗理论的研究及应用进展[J]. 应用化工, 2010,39(7): 1 074-1 078.
|
87 |
Ghanbarian B, Ioannidis M A, Hunt A G. Theoretical insight into the empirical tortuosity-connectivity factor in the burdine-brooks-corey water relative permeability model[J]. Water Resources Research, 2017,53(12): 10 395-10 410.
|
88 |
Hunt A G, Flow Sahimi M., transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium approximation[J]. Reviews of Geophysics, 2017,55. DOI: 10.1002/2017RG000558.
doi: 10.1002/2017RG000558
|
89 |
Hunt A G. Upscaling in subsurface transport using cluster statistics of percolation[J]. Transport in Porous Media, 1998,30(2): 177-198.
|
90 |
Hunt A G. Applications of percolation theory to porous media with distributed local conductances[J]. Advances in Water Resources, 2001,24(3/4): 279-307.
|
91 |
Hunt A G, Gee G W. Water-retention of fractal soil models using continuum percolation theory: Tests of hanford site soils[J]. Vadose Zone Journal, 2002,1(2): 252-260.
|
92 |
Hunt A G. Comparing van Genuchten and percolation theoretical formulations of the hydraulic properties of unsaturated media[J]. Vadose Zone Journal, 2004,3(4): 1 483-1 488.
|
93 |
Hunt A G. Percolation theory and the future of hydrogeology[J]. Hydrogeology Journal, 2005,13(1): 202-205.
|
94 |
Sahimi M. Characterization of pore space connectivity: Percolation theory[M]//Flow and Transport in Porous Media and Fractured Rock. Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 15-37.
|
95 |
Ghanbarian-Alavijeh B, Hunt A G. Unsaturated hydraulic conductivity in porous media: Percolation theory[J]. Geoderma, 2012,187: 77-84.
|
96 |
Hunt A, Ewing R, Ghanbarian B. Percolation Theory for Flow in Porous Media.Lecture Notes in Physics 880[M]. Heidelberg, Germany:Springer-Verlag, 2014.
|
97 |
Geistlinger H, Ataei-Dadavi I, Mohammadian S, et al. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media: Comparison with percolation theory[J]. Water Resources Research, 2015,51(11): 9 094-9 111.
|
98 |
Tavagh-Mohammadi B, Masihi M, Ganjeh-Ghazvini M. Point-to-point connectivity prediction in porous media using percolation theory[J]. Physica A: Statistical Mechanics and Its Applications, 2016,460: 304-313.
|
99 |
Ghanbarian B, Hunt A G. Improving unsaturated hydraulic conductivity estimation in soils via percolation theory[J]. Geoderma, 2017,303: 9-18.
|
100 |
Koestel J, Dathe A, Skaggs T H, et al. Estimating the permeability of naturally structured soil from percolation theory and pore space characteristics imaged by X-ray[J]. Water Resources Research, 2018,54(11): 9 255-9 263.
|
101 |
Zarlenga A, de Barros F P J, Fiori A. Uncertainty quantification of adverse human health effects from continuously released contaminant sources in groundwater systems[J]. Journal of Hydrology, 2016,541: 850-861.
|
102 |
Bolster D, Barahona M, Dentz M, et al. Probabilistic risk analysis of groundwater remediation strategies[J]. Water Resources Research, 2009,45: W06413. DOI:10.1029/2008WR007551.
doi: 10.1029/2008WR007551
|
103 |
Shi Liangsheng, Tang Yunqing, Yang Jinzhong. Risk assessment of groundwater contamination based on stochastic collocation method [J]. Advances in Water Science, 2012,23(4): 529-538.
|
|
史良胜, 唐云卿, 杨金忠. 基于随机配点法的地下水污染风险评价[J]. 水科学进展, 2012,23(4): 529-538.
|
104 |
Shi L, Zeng L, Tang Y, et al. Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(6): 1 453-1 464.
|
105 |
de Barros F P J, Fiori A. First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: Theoretical analysis and implications for human health risk assessment[J]. Water Resources Research, 2014,50(5): 4 018-4 037.
|
106 |
Zhang D, Shi L, Chang H, et al. A comparative study of numerical approaches to risk assessment of contaminant transport[J]. Stochastic Environmental Research and Risk Assessment, 2010,24(7): 971-984.
|
107 |
Cirpka O A, de Barros F P J, Chiogna G, et al. Probability density function of steady state concentration in two-dimensional heterogeneous porous media[J]. Water Resources Research, 2011,47(11): W11523. DOI:10.1029/2011WR010750.
doi: 10.1029/2011WR010750
|
108 |
Li G, Loper D E. Transport, dilution, and dispersion of contaminant in a leaky karst conduit[J]. Transport in Porous Media, 2011,88(1): 31-43.
|
109 |
Zech A, Attinger S, Cvetkovic V, et al. Is unique scaling of aquifer macrodispersivity supported by field data?[J]. Water Resources Research, 2015,51(9): 7 662-7 679.
|
110 |
Dentz M, Carrera J. Effective dispersion in temporally fluctuating flow through a heterogeneous medium[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2003,68(32): 363 101-3 631 018.
|
111 |
Bellin A, Tonina D. Probability density function of non-reactive solute concentration in heterogeneous porous formations[J]. Journal of Contaminant Hydrology, 2007,94(1/2): 109-125.
|
112 |
De Barros F P J, Bolster D, Sanchez-Vila X, et al. A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology[J]. Water Resources Research, 2011,47(5): W05508. DOI: 10.1029/2010WR009954.
doi: 10.1029/2010WR009954
|
113 |
Zhang X, Huang G H. Assessment of BTEX-induced health risk under multiple uncertainties at a petroleum-contaminated site: An integrated fuzzy stochastic approach[J]. Water Resources Research, 2011,47: W12533. DOI:10.1029/2011WR010682.
doi: 10.1029/2011WR010682
|
114 |
Cvetkovic V, Molin S. Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater[J]. Advances in Water Resources, 2012,36: 98-107.
|
115 |
Siirila E R, Maxwell R M. A new perspective on human health risk assessment: Development of a time dependent methodology and the effect of varying exposure durations[J]. Science of the Total Environment, 2012,431: 221-232.
|
116 |
Tartakovsky D M, Nowak W, Bolster D. Introduction to the special issue on uncertainty quantification and risk assessment[J]. Advances in Water Resources, 2012,36: 1-2.
|
117 |
Siirila-Woodburn E R, Fernandez-Garcia D, Sanchez-Vila X. Improving the accuracy of risk prediction from particle-based breakthrough curves reconstructed with kernel density estimators[J]. Water Resources Research, 2015,51(6): 4 574-4 591.
|
118 |
Wang Y Y, Huang G H, Wang S, et al. A risk-based interactive multi-stage stochastic programming approach for water resources planning under dual uncertainties[J]. Advances in Water Resources, 2016,94: 217-230.
|
119 |
Libera A, Henri C V, de Barros F P J. Hydraulic conductivity and porosity heterogeneity controls on environmental performance metrics: Implications in probabilistic risk analysis[J]. Advances in Water Resources, 2019,127: 1-12.
|
120 |
Locatelli L, Binning P J, Sanchez-Vila X, et al. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites[J]. Journal of Contaminant Hydrology, 2019,221: 35-49.
|
121 |
Ministry of Ecology and Environment of the People's Republic of China.Technical Guidelines for Environmental Impact Assessment—Groundwater Environment:HJ610-2016[S].Beijing:Ministry of Ecology and Environment of the People's Republic of China,2016.
|
|
中华人民共和国生态环境部. 环境影响评价技术导则地下水环境:HJ610-2016[S].北京:中华人民共和国生态环境部,2016.
|
122 |
Wang Renmin, Mei Xiangyang, Qin Ronggao, et al. Groundwater contamination risk analysis for karst aquifer with thick unsaturated zone [J]. Value Engineering, 2019,38(12): 135-139.
|
|
王仁敏, 梅向阳, 覃荣高, 等. 含巨厚非饱和带岩溶含水层地下水污染风险分析[J]. 价值工程, 2019,38(12): 135-139.
|
123 |
Xu T, Gómez-Hernández J J. Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering[J]. Water Resources Research, 2016,52(8): 6 587-6 595.
|
124 |
Zhao Y, Lu W, Xiao C. A Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sources[J]. Journal of Contaminant Hydrology, 2016,185/186: 51-60.
|
125 |
Vesselinov V V, Alexandrov B S, O’Malley D. Contaminant source identification using semi-supervised machine learning[J]. Journal of Contaminant Hydrology, 2018,212: 134-142.
|
126 |
Xu T, Gómez-Hernández J J. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter[J]. Advances in Water Resources, 2018,112: 106-123.
|
127 |
Dai Z X, Zhan C J, Soltanian M R, et al. Identifying spatial correlation structure of multimodal permeability in hierarchical media with Markov chain approach[J]. Journal of Hydrology, 2019,568: 703-715.
|
128 |
Kollat J B, Reed P M, Maxwell R M. Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics[J]. Water Resources Research, 2011,47(2): W02529. DOI:10.1029/2010WR009194.
doi: 10.1029/2010WR009194
|
129 |
Reed P M, Kollat J B. Visual analytics clarify the scalability and effectiveness of massively parallel many-objective optimization: A groundwater monitoring design example[J]. Advances in Water Resources, 2013,56: 1-13.
|
130 |
Reed P M, Hadka D, Herman J D, et al. Evolutionary multiobjective optimization in water resources: The past, present, and future[J]. Advances in Water Resources, 2013,51: 438-456.
|
131 |
Sun Caizhi, Chen Xiangtao, Chen Xuejiao, et al. Recent advances in groundwater contamination risk assessment [J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 152-161.
|
|
孙才志, 陈相涛, 陈雪姣, 等. 地下水污染风险评价研究进展[J].水利水电科技进展,2015, 35(5): 152-161.
|