地球科学进展 ›› 2019, Vol. 34 ›› Issue (2): 175 -190. doi: 10.11867/j.issn.1001-8166.2019.02.0175

上一篇    下一篇

全球变暖停滞的研究进展回顾
徐一丹 1( ),李建平 1( ),汪秋云 1,林霄沛 2   
  1. 1. 北京师范大学全球变化与地球系统科学研究院,北京100875
    2. 中国海洋大学物理海洋教育部重点实验室,青岛海洋科学与技术国家实验室,山东 青岛 266100
  • 收稿日期:2018-09-14 修回日期:2018-12-07 出版日期:2019-02-10
  • 通讯作者: 李建平 E-mail:201731490004@mail.bnu.edu.cn;ljp@bnu.edu.cn
  • 基金资助:
    国家重点研发计划项目“外部强迫和内部变率在全球变暖停滞中的作用”(编号:2016YFA0601801);海洋局国际合作项目“太平洋—印度洋与亚洲季风的相互影响”(GASI-IPOVAI-03)资助.

Review of the Research Progress in Global Warming Hiatus

Yidan Xu 1( ),Jianping Li 1( ),Qiuyun Wang 1,Xiaopei Lin 2   

  1. 1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    2. Physical Oceanography Laboratory / CIMST, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
  • Received:2018-09-14 Revised:2018-12-07 Online:2019-02-10 Published:2019-03-26
  • Contact: Jianping Li E-mail:201731490004@mail.bnu.edu.cn;ljp@bnu.edu.cn
  • About author:Xu Yidan(1992-), female, Baofeng County, Henan Province, Ph.D student. Research areas include dynamic meteorology. E-mail:201731490004@mail.bnu.edu.cn|Li Jianping (1969-), male, Shanyin County, Shanxi Province, Professor. Research areas include climate dynamics and predictability, monsoons, and annular modes and their impacts. E-mail: ljp@bnu.edu.cn
  • Supported by:
    Project supported by the National Key R & D Program of China “The roles of external forcing and internal variability in the global warming hiatus”(No. 2016YFA0601801);The State Oceanic Administration (SOA) International Cooperation Program on Global Change and Air-Sea Interactions “Interaction between the Indo-Pacific Ocean and Asian Monsoon”(GASI-IPOVAI-03);Project supported by the National Key R & D Program of China “The roles of external forcing and internal variability in the global warming hiatus” (No. 2016YFA0601801); The State Oceanic Administration (SOA) International Cooperation Program on Global Change and Air-Sea Interactions “Interaction between the Indo-Pacific Ocean and Asian Monsoon” (GASI-IPOVAI-03).

1998—2012年,全球平均地面增温速率较之前明显趋缓,出现全球变暖停滞现象,该现象的成因与机制是当前气候变化研究的一个热点领域。主要从外部强迫和内部变率2个角度回顾全球变暖停滞产生机制的研究进展。从气候系统外部强迫影响来说,全球变暖停滞主要受到太阳活动、火山爆发、气溶胶以及平流层水汽等的影响。从气候系统内部调控作用来看,全球增温速率减缓主要受到太平洋、大西洋、印度洋和南大洋自然变率以及相应的热量再分配过程的影响。全球变暖停滞期间气候系统内部能量并没有减少,其中一部分能量被转移并储存在了海洋中深层,从而对全球增温减缓产生影响。同时,重点回顾了针对部分耦合强迫作用的“起搏器”试验,该类试验是研究全球变暖停滞的特征、成因及机制的有力手段。此外,也总结了全球变暖停滞现象对气候系统能量收支平衡、资料、模拟以及相关政策制定等方面带来的挑战,展望了未来的研究重点。

From 1998 to 2012, the warming rate of global mean surface air temperature showed significantly slower than before, which is referred to as the global warming hiatus. The causes and underlying mechanisms of this phenomenon are currently a hot topic of climatic change research. The research significance of global warming hiatus was discussed and relevant research progress was reviewed from two perspectives of external forcings and internal variabilities. In term of external forcings, global warming hiatus is mainly affected by solar activities, volcanic eruptions, aerosols and stratospheric water vapor. With respect to internal variabilities, the warming rate of global mean surface air temperature slowdown is mainly related to the natural variabilities of the Pacific Ocean, the Atlantic Ocean, the Indian Ocean and the Southern Ocean and influenced by the related heat redistribution processes. During the global warming hiatus period, some energy is transferred and restored in the deep ocean so as to modulate the global warming rate, rather than there is a reduction of global total energy in the climate system. In addition, the partially coupled forcing pacemaker model experiment was also reviewed. The pacemaker experiment is a powerful tool for studying the characteristics, causes and underlying mechanisms of the global warming hiatus. Besides, some challenges resulted from the global warming hiatus, including the global energy imbalance, data, simulation and related policy-making were summarized, and future research directions were also discussed.

中图分类号: 

图1 18502014年全球平均温度变化与全球大气CO2 浓度曲线[ 2 ]
Fig. 1 The global mean temperature and global atmospheric CO2 concentration from 1850 to 2014 [ 2 ]
图2 基于观测、历史试验(HIST)以及太平洋—全球大气—历史试验(POGA-H)的年平均全球温度变化趋势[ 52 ]
Fig. 2 Annual mean global temperature trends based on observations and simulated (HIST and POGA-H)[ 52 ]
图3 19922011年太平洋温度趋势及海气环流的原理图[ 11 ]
Fig. 3 Schematic of the trends in temperature and ocean-atmosphere circulation in the Pacific over 1992-2011 [ 11 ]
图4 大西洋多年代际振荡远程调控西太平洋年代际变化的物理机制图[ 72 ]
Fig. 4 Schematic diagram for the teleconnection between AMO and western tropical Pacific decadal variability [ 72 ]
图5 19002011年北半球平均温度(DNHT)、北大西洋涛动(NAO)以及北大西洋多年代际振荡(AMO)指数[ 10 ]
Fig. 5 DNHT, NAO, and AMO indices from 1900 to 2011 [ 10 ]
图6 大气层顶净辐射与海洋热含量[ 85 ]
Fig. 6 Top-of-Atmosphere (TOA) net radiation and global ocean Heat-Content (HC)[ 85 ]
1 IPCC . Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2013:533. DOI: 10. 1017/CBO9781107415324.
doi: 10. 1017/CBO9781107415324.    
2 Li Jianping , Sun Cheng , Ding Ruiqiang . Decadal coupled ocean-atmosphere interaction in North Atlantic and global warming hiatus [M]// Special Publications of the International Union of Geodesy and Geophysics. United Kingdom: Cambridge University Press, 2018.
3 Smith T M , Peterson T C , Lawrimore J H , et al . New surface temperature analyses for climate monitoring [J]. Geophysical Research Letters, 2005, 32: L14712. DOI: 10.1029/2005gl023402.
doi: 10.1029/2005gl023402.    
4 Investor's Business Daily . Alarmists still heated even as world cools [EB/OL]. 2008.[2018-05-04]. .
URL    
5 Easterling D R , Wehner M F . Is the climate warming or cooling [J]. Geophysical Research Letters, 2009, 36: L08706. DOI: 10.1029/2009GL037810.
doi: 10.1029/2009GL037810.    
6 Knight J , Kennedy J J , Folland C , et al . Do global temperature trends over the last decade falsify climate predictions [J]. Bulletin of the American Meteorological Society, 2009, 90(8): S22-S46.
7 Kerr R A . What happen to global warming? Scientists say just wait a bit [J]. Science, 2009, 326(5 949): 28-29. DOI: 10.1126/science.326_28a.
doi: 10.1126/science.326_28a.    
8 Medhaug I , Stolpe M B , Fischer E M , et al . Reconciling controversies about the 'global warming hiatus' [J]. Nature, 2017, 545(7 652): 41-47. DOI: 10.1038/nature22315.
doi: 10.1038/nature22315.    
9 Xing Nan , Li Jianping , Wang Lanning . Multidecadal trends in large-scale annual mean SATa based on CMIP5 historical simulations and future projections [J]. Engineering, 2017, 3(3): 136-143. DOI: 10.1016/J.ENG.2016.04.011.
doi: 10.1016/J.ENG.2016.04.011.    
10 Li Jianping , Sun Cheng , Jin Feifei . NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability [J]. Geophysical Research Letters, 2013, 40(20): 5 497-5 502. DOI: 10.1002/2013gl057877.
doi: 10.1002/2013gl057877.    
11 England M H , McGregor S , Spence P , et al . Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus [J]. Nature Climate Change, 2014, 4(3): 222-227. DOI: 10.1038/nclimate2106.
doi: 10.1038/nclimate2106.    
12 Brohan P , Kennedy J J , Harris I , et al . Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 [J]. Journal of Geophysical Research Atmospheres, 2006, 111: D12106. DOI:10.1029/2005JD006548.
doi: 10.1029/2005JD006548.    
13 Br?nnimann S . Climate science: Pacemakers of warming [J]. Nature Geoscience, 2014, 8(2): 87-89. DOI: 10.1038/ngeo2330.
doi: 10.1038/ngeo2330.    
14 Dai Aiguo , Fyfe J C , Xie Shangping , et al . Decadal modulation of global surface temperature by internal climate variability [J]. Nature Climate Change, 2015, 5(6): 555-559. DOI: 10.1038/nclimate2605.
doi: 10.1038/nclimate2605.    
15 Trenberth K E , Fasullo J T . An apparent hiatus in global warming? [J]. Earth's Future, 2013, 1(1): 19-32. DOI: 10.1002/2013ef000165.
doi: 10.1002/2013ef000165.    
16 Lauren Morello A A , Butler Declan , Callaway Ewen , et al . 365 days: 2014 in science [J]. Nature, 2014, 516(7 531): 300-303.
17 Xie Shangping , Kosaka Y . What caused the global surface warming hiatus of 1998—2013? [J]. Current Climate Change Reports, 2017, 3(2): 128-140. DOI: 10.1007/s40641-017-0063-0.
doi: 10.1007/s40641-017-0063-0.    
18 Lin Xiaopei , Xu Lixiao , Li Jianping , et al . Research on the global warming hiatus [J]. Advances in Earth Science, 2016, 31(10): 995-1 000.
林霄沛,许丽晓,李建平,等 .全球变暖“停滞”现象辨识与机理研究[J].地球科学进展, 2016, 31(10): 995-1 000.
19 Trenberth K E , Fasullo J T . Global warming due to increasing absorbed solar radiation [J]. Geophysical Research Letters, 2009, 36: L07706. DOI: 10.1029/2009gl037527.
doi: 10.1029/2009gl037527.    
20 Gray L J , Beer J , Geller M , et al . Solar influences on climate [J]. Reviews of Geophysics, 2010, 48(4). DOI: 10.1029/2009rg000282.
doi: 10.1029/2009rg000282.    
21 Lean J L , Rind D H . How will Earth's surface temperature change in future decades? [J]. Geophysical Research Letters, 2009, 36: L15708. DOI: 10.1029/2009gl038932.
doi: 10.1029/2009gl038932.    
22 Kaufmann R K , Kauppi H , Mann M L , et al . Reconciling anthropogenic climate change with observed temperature 1998- 2008 [J]. Proceedings of the National Academy of Sciences, 2011, 108(29): 11 790-11 793. DOI: 10.1073/pnas.1102467108/-/DCSupplemental.
doi: 10.1073/pnas.1102467108/-/DCSupplemental.    
23 Hansen J , Sato M , Kharecha P , et al . Earth's energy imbalance and implications [J]. Atmospheric Chemistry and Physics, 2011, 11(24): 13 421-1 3449. DOI: 10.5194/acp-11-13421-2011.
doi: 10.5194/acp-11-13421-2011.    
24 Zhou Jiansong , Tung K K . Solar cycles in 150 years of global sea surface temperature data [J]. Journal of Climate, 2010, 23(12): 3 234-3 248. DOI: 10.1175/2010JCLI3232.1.
doi: 10.1175/2010JCLI3232.1.    
25 Zhou Jiansong , Tung K K . Deducing multidecadal anthropogenic global warming trends using multiple regression analysis [J]. Journal of the Atmospheric Sciences, 2013, 70(1): 3-8. DOI: 10.1175/Jas-D-12-0208.1.
doi: 10.1175/Jas-D-12-0208.1.    
26 Zhou Jiansong , Tung K K . Observed tropospheric temperature response to 11-yr solar cycle and what it reveals about mechanisms [J]. Journal of the Atmospheric Sciences, 2013, 70(1): 9-14. DOI: 10.1175/Jas-D-12-0214.1.
doi: 10.1175/Jas-D-12-0214.1.    
27 Pachauri R K , Allen M R , Barros V R , et al . Climate change 2014: Synthesis report[M]// Pachauri R, Meyer L, eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2014.
28 Rosenfeld D . Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets [M]. New York, NY: Springer, 2006.
29 Rosenfeld D . Atmosphere-aerosols, clouds, and climate [J]. Science, 2006, 312(5 778): 1 323-1 324. DOI: 10.1126/science.1128972.
doi: 10.1126/science.1128972.    
30 Rosenfeld D , Sherwood S , Wood R , et al . Climate effects of aerosol-cloud interactions [J]. Science, 2014, 343(6 169): 379-380. DOI: 10.1126/science.1247490.
doi: 10.1126/science.1247490.    
31 Newhall C G , Self S . The volcanic explosivity index (Vei)—An estimate of explosive magnitude for historical volcanism [J]. Journal of Geophysical Research Oceans, 1982, 87(Nc2):1 231-1 238. DOI: 10.1029/Jc087ic02p01231.
doi: 10.1029/Jc087ic02p01231.    
32 Kremser S , Thomason L W , von Hobe M , et al . Stratospheric aerosol-observations, processes, and impact on climate [J]. Reviews of Geophysics, 2016, 54(2): 278-335. DOI: 10.1002/2015RG000511.
doi: 10.1002/2015RG000511.    
33 Jonsson H H , Wilson J C , Brock C A , et al . Evolution of the stratospheric aerosol in the northern hemisphere following the June 1991 volcanic eruption of Mount Pinatubo: Role of tropospheric-stratospheric exchange and transport [J]. Journal of Geophysical Research Atmospheres, 1996, 101(D1): 1 553-1 570. DOI: 10.1029/95jd02932.
doi: 10.1029/95jd02932.    
34 Sato M , Hansen J E , Mccormick M P , et al . Stratospheric aerosol optical depths, 1850-1990 [J]. Journal of Geophysical Research Atmospheres, 1993, 98(D12): 22 987-22 994. DOI: 10.1029/93jd02553.
doi: 10.1029/93jd02553.    
35 Robock A . Volcanic eruptions and climate [J]. Reviews of Geophysics, 2000, 38(2): 191-219. DOI: 10.1029/1998rg000054.
doi: 10.1029/1998rg000054.    
36 Ramaswamy V , Schwarzkopf M D , Randel W J , et al . Anthropogenic and natural influences in the evolution of lower stratospheric cooling [J]. Science, 2006, 311(5 764): 1 138-1 141. DOI: 10.1126/science.1122587.
doi: 10.1126/science.1122587.    
37 Santer B D , Wigley T M L , Doutriaux C , et al . Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends [J]. Journal of Geophysical Research Atmospheres, 2001, 106(D22): 28 033-28 059. DOI: 10.1029/2000jd000189.
doi: 10.1029/2000jd000189.    
38 Santer B D , Bonfils C , Painter J F , et al . Volcanic contribution to decadal changes in tropospheric temperature [J]. Nature Geoscience, 2014, 7(3): 185-189. DOI: 10.1038/ngeo2098.
doi: 10.1038/ngeo2098.    
39 Wigley T M L , Ammann C M , Santer B D , et al . Effect of climate sensitivity on the response to volcanic forcing [J]. Journal of Geophysical Research Atmospheres, 2005, 110(D9). DOI: 10.1029/2004jd005557.
doi: 10.1029/2004jd005557.    
40 Brock C A , Hudson P K , Lovejoy E R , et al . Particle characteristics following cloud-modified transport from Asia to North America [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D23). DOI:10.1029/2003jd004198.
doi: 10.1029/2003jd004198.    
41 Solomon S , Daniel J S , III R R N, et al . The persistently variable `background' stratospheric aerosol layer and global climate change [J]. Science, 2011, 333(6 044): 866-870.
42 Vernier J P , Thomason L W , Pommereau J P , et al . Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade [J]. Geophysical Research Letters, 2011, 38: L12807. DOI: 10.1029/2011gl047563.
doi: 10.1029/2011gl047563.    
43 Kvalevag M M , Myhre G . Human impact on direct and diffuse solar radiation during the industrial era [J]. Journal of Climate, 2007, 20(19): 4 874-4 883. DOI: 10.1175/JCLI4277.1.
doi: 10.1175/JCLI4277.1.    
44 Myhre G , Berglen T F , Myhre C E L , et al . The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer [J]. Tellus Series B: Chemical And Physical Meteorology, 2004, 56(3): 294-299. DOI: 10.1111/j.1600-0889.2004.00106.x.
doi: 10.1111/j.1600-0889.2004.00106.x.    
45 Solomon S , Rosenlof K H , Portmann R W , et al . Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Science, 2010, 327(5 970): 1 219-1 223.
46 Zhang Yuan , Wallace J M , Battisti D S . ENSO-like interdecadal variability: 1900-93 [J]. Journal of Climate, 1997, 10(5): 1 004-1 020. DOI: 10.1175/1520-0442(1997)010<1004:Eliv>2.0.Co;2.
doi: 10.1175/1520-0442(1997)010    
47 Mantua N J , Hare S R , Wallace J M , et al . A pacific interdecadal climate oscillation with impacts on salmon production [J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1 069-1 079. DOI: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
doi: 10.1175/1520-0477(1997)078    
48 Minobe S , Mantua N . Interdecadal modulation of interannual atmospheric and oceanic variability over the North Pacific [J]. Progress in Oceanography, 1999, 43(2/4): 163-192. DOI: 10.1016/S0079-6611(99)00008-7.
doi: 10.1016/S0079-6611(99)00008-7.    
49 Power S , Casey T , Folland C , et al . Inter-decadal modulation of the impact of ENSO on Australia [J]. Climate Dynamics, 1999, 15(5): 319-324. DOI: 10.1007/s003820050284.
doi: 10.1007/s003820050284.    
50 Deser C , Phillips A S , Hurrell J W . Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900 [J]. Journal of Climate, 2004, 17(16): 3 109-3 124.
51 Folland C K , Renwick J A , Salinger M J , et al . Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone [J]. Geophysical Research Letters, 2002, 29(13): 1 643. DOI: 10.1029/2001gl014201.
doi: 10.1029/2001gl014201.    
52 Kosaka Y , Xie Shangping . Recent global-warming hiatus tied to equatorial Pacific surface cooling [J]. Nature, 2013, 501(7 467): 403-407. DOI: 10.1038/nature12534.
doi: 10.1038/nature12534.    
53 Chen Xianyao , Wallace J M . ENSO-Like variability: 1900-2013 [J]. Journal of Climate, 2015, 28(24): 9 623-9 641. DOI: 10.1175/Jcli-D-15-0322.1.
doi: 10.1175/Jcli-D-15-0322.1.    
54 Meehl G A , Hu Aixue , Arblaster J M , et al . Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation [J]. Journal of Climate, 2013, 26(18): 7 298-7 310. DOI: 10.1175/jcli-d-12-00548.1.
doi: 10.1175/jcli-d-12-00548.1.    
55 Maher N , Sen Gupta A , England M H . Drivers of decadal hiatus periods in the 20th and 21st centuries [J]. Geophysical Research Letters, 2014, 41(16): 5 978-5 986. DOI: 10.1002/2014GL060527.
doi: 10.1002/2014GL060527.    
56 McGregor S , Sen Gupta A , England M H . Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution [J]. Journal of Climate, 2012, 25(23): 8 164-8 176. DOI: 10.1175/Jcli-D-12-00105.1.
doi: 10.1175/Jcli-D-12-00105.1.    
57 Merrifield M A , Maltrud M E . Regional sea level trends due to a Pacific trade wind intensification [J]. Geophysical Research Letters, 2011, 38: L21605. DOI: 10.1029/2011gl049576.
doi: 10.1029/2011gl049576.    
58 Zhang Wenjun , Li Jianping , Zhao Xia . Sea surface temperature cooling mode in the Pacific cold tongue [J]. Journal of Geophysical Research Oceans, 2010, 115: C12042. DOI:10.1029/2010JC006501.
doi: 10.1029/2010JC006501.    
59 Li Yang , Li Jianping , Zhang Wenjun , et al . Ocean dynamical processes associated with the tropical Pacific cold tongue mode [J]. Journal of Geophysical Research Oceans, 2015, 120(9): 6 419-6 435.
60 Li Yang , Li Jianping , Zhang Wenjun , et al . Impacts of the tropical Pacific cold tongue mode on ENSO diversity under global warming [J]. Journal of Geophysical Research Oceans, 2017, 122(11): 8 524-8 542.
61 Lau N C , Nath M J . The role of the 'atmospheric bridge' in linking tropical Pacific ENSO events to extratropical SST anomalies [J]. Journal of Climate, 1996, 9(9): 2 036-2 057. DOI: 10.1175/1520-0442(1996)009 <2036:Trotbi>2.0.Co;2.
doi: 10.1175/1520-0442(1996)009    
62 Alexander M A , Blade I , Newman M , et al . The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans [J]. Journal of Climate, 2002, 15(16): 2 205-2 231. DOI: 10.1175/1520-0442(2002)015 <2205:Tabtio>2.0.Co;2.
doi: 10.1175/1520-0442(2002)015    
63 Neelin J D , Battisti D S , Hirst A C , et al . ENSO theory [J]. Journal of Geophysical Research Oceans, 1998, 103(C7): 14 261-14 290. DOI: 10.1029/97jc03424.
doi: 10.1029/97jc03424.    
64 Wang Chuanyang , Xie Shangping , Kosaka Y , et al . Global influence of tropical Pacific variability with implications for global warming slowdown [J]. Journal of Climate, 2017, 30(7): 2 679-2 695.
65 McGregor S , Timmermann A , Stuecker M F , et al . Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming [J]. Nature Climate Change, 2014, 4(10): 888-892. DOI: 10.1038/nclimate2330.
doi: 10.1038/nclimate2330.    
66 Chikamoto Y , Mochizuki T , Timmermann A , et al . Potential tropical Atlantic impacts on Pacific decadal climate trends [J]. Geophysical Research Letters, 2016, 43(13): 7 143-7 151. DOI: 10.1002/2016GL069544.
doi: 10.1002/2016GL069544.    
67 Kucharski F , Kang I S , Farneti R , et al . Tropical Pacific response to 20th century Atlantic warming [J]. Geophysical Research Letters, 2011, 38: L03702. DOI: 10.1029/2010gl046248.
doi: 10.1029/2010gl046248.    
68 Kucharski F , Ikram F , Molteni F , et al . Atlantic forcing of Pacific decadal variability [J]. Climate Dynamics, 2016, 46(7/8): 2 337-2 351. DOI: 10.1007/s00382-015-2705-z.
doi: 10.1007/s00382-015-2705-z.    
69 Li Xichen , Xie Shangping , Gille S T , et al . Atlantic-induced pan-tropical climate change over the past three decades [J]. Nature Climate Change, 2015, 6(3): 275-279. DOI: 10.1038/nclimate2840.
doi: 10.1038/nclimate2840.    
70 Yao Shuailei , Luo Jingjia , Huang Gang , et al . Distinct global warming rates tied to multiple ocean surface temperature changes [J]. Nature Climate Change, 2017, 7(7): 486-491. DOI: 10.1038/nclimate3304.
doi: 10.1038/nclimate3304.    
71 Han Weiqing , Meehl G A , Hu Aixue , et al . Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades [J]. Climate Dynamics, 2014, 43(5/6): 1 357-1 379.
72 Sun Cheng , Kucharski F , Li Jianping , et al . Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation [J]. Nature Communiications, 2017, 8:15 998. DOI: 10.1038/ncomms15998.
doi: 10.1038/ncomms15998.    
73 Sun Cheng , Li Jianping , Jin Feifei . A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO [J]. Climate Dynamics, 2015, 45(7/8): 2 083-2 099. DOI: 10.1007/s00382-014-2459-z.
doi: 10.1007/s00382-014-2459-z.    
74 Mochizuki T , Kimoto M , Watanabe M , et al . Interbasin effects of the Indian Ocean on Pacific decadal climate change [J]. Geophysical Research Letters, 2016, 43(13): 7 168- 7 175. DOI: 10.1002/2016GL069940.
doi: 10.1002/2016GL069940.    
75 Timmermann A , McGregor S , Jin Feifei . Wind effects on past and future regional sea level trends in the southern Indo-Pacific [J]. Journal of Climate, 2010, 23(16): 4 429-4 437. DOI: 10.1175/2010JCLI3519.1.
doi: 10.1175/2010JCLI3519.1.    
76 Nidheesh A G , Lengaigne M , Vialard J , et al . Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean [J]. Climate Dynamics, 2013, 41(2): 381-402. DOI: 10.1007/s00382-012-1463-4.
doi: 10.1007/s00382-012-1463-4.    
77 Nieves V , Willis J K , Patzert W C . Recent hiatus caused by decadal shift in Indo-Pacific heating [J]. Science, 2015, 349(6 247): 532-535. DOI: 10.1126/science.aaa4521.
doi: 10.1126/science.aaa4521.    
78 Cohen J L , Furtado J C , Barlow M , et al . Asymmetric seasonal temperature trends [J]. Geophysical Research Letters, 2012, 39: L04705. DOI: 10.1029/2011gl050582.
doi: 10.1029/2011gl050582.    
79 Cohen J L , Furtado J C , Barlow M A , et al . Arctic warming, increasing snow cover and widespread boreal winter cooling [J]. Environmental Research Letters, 2012, 7(1). DOI: 10.1088/1748-9326/7/1/014007.
doi: 10.1088/1748-9326/7/1/014007.    
80 Kosaka Y , Xie Shangping . The tropical Pacific as a key pacemaker of the variable rates of global warming [J]. Nature Geoscience, 2016, 9(9): 669-673. DOI: 10.1038/ngeo2770.
doi: 10.1038/ngeo2770.    
81 Dong Lu , Zhou Tianjun , Dai Aiguo , et al . The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures [J]. Scientific Reports, 2016, 6: 21 251.
82 Wang Xiaofan , Li Jianping , Sun Cheng , et al . NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations [J]. Journal of Geophysical Research Atmospheres, 2017, 122(8): 4 202-4 227.
83 Keenlyside N S , Latif M , Jungclaus J , et al . Advancing decadal-scale climate prediction in the North Atlantic sector [J]. Nature, 2008, 453(7 191): 84-88. DOI: 10.1038/nature06921.
doi: 10.1038/nature06921.    
84 Balmaseda M A , Trenberth K E , K?llén E . Distinctive climate signals in reanalysis of global ocean heat content [J]. Geophysical Research Letters, 2013, 40(9): 1 754-1 759. DOI: 10.1002/grl.50382.
doi: 10.1002/grl.50382.    
85 Meehl G A , Arblaster J M , Fasullo J T , et al . Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods [J]. Nature Climate Change, 2011, 1(7): 360-364. DOI: 10.1038/nclimate1229.
doi: 10.1038/nclimate1229.    
86 Watanabe M , Kamae Y , Yoshimori M , et al . Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus [J]. Geophysical Research Letters, 2013, 40(12): 3 175-3 179. DOI: 10.1002/grl.50541.
doi: 10.1002/grl.50541.    
87 Trenberth K E , Fasullo J T , Balmaseda M A . Earth’s energy imbalance [J]. Journal of Climate, 2014, 27(9): 3 129-3 144. DOI: 10.1175/jcli-d-13-00294.1.
doi: 10.1175/jcli-d-13-00294.1.    
88 Hansen J , Nazarenko L , Ruedy R , et al . Earth's energy imbalance: Confirmation and implications [J]. Science, 2005, 308(5 727): 1 431-1 435. DOI: 10.1126/science.1110252.
doi: 10.1126/science.1110252.    
89 Meehl G A , Hu Aixue , Santer B D . The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability [J]. Journal of Climate, 2009, 22(3): 780-792. DOI: 10.1175/2008JCLI2552.1.
doi: 10.1175/2008JCLI2552.1.    
90 Chen Xianyao , Tung K K . Varying planetary heat sink led to global-warming slowdown and acceleration [J]. Science, 2014, 345(6 199): 897-903. DOI: 10.1126/science.1254937.
doi: 10.1126/science.1254937.    
91 Chen Xianyao , Tung K K . Global surface warming enhanced by weak Atlantic overturning circulation [J]. Nature, 2018, 559(7 714): 387-391. DOI: 10.1038/s41586-018-0320-y.
doi: 10.1038/s41586-018-0320-y.    
92 Hu Zeyuan , Hu Aixue , Hu Yongyun . Contributions of interdecadal Pacific oscillation and Atlantic multidecadal oscillation to global ocean heat content distribution [J]. Journal of Climate, 2018, 31(3): 1 227-1 244.
93 Lee S K , Park W S , Baringer M O , et al . Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus [J]. Nature Geoscience, 2015, 8(6): U445-U441. DOI:10.1038/NGEO2438.
doi: 10.1038/NGEO2438.    
94 Wijffels S , Roemmich D , Monselesan D , et al . Ocean temperatures chronicle the ongoing warming of Earth [J]. Nature Climate Change, 2016, 6(2): 116-118. DOI: 10.1038/Nclimate2924.
doi: 10.1038/Nclimate2924.    
95 Hu Xiaoming , Sejas S A , Cai Ming , et al . Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim [J]. Climate Dynamics, 2018. DOI: 10.1007/s00382-018-4232-1.
doi: 10.1007/s00382-018-4232-1.    
96 Crowley T J , Baum S K , Kim K Y , et al . Modeling ocean heat content changes during the last millennium [J]. Geophysical Research Letters, 2003, 30(18):1 932. DOI: 10.1029/2003 GL017801.
doi: 10.1029/2003 GL017801.    
97 Thompson D W J , Solomon S . Interpretation of recent Southern Hemisphere climate change [J]. Science, 2002, 296(5 569): 895-899. DOI: 10.1126/science.1069270.
doi: 10.1126/science.1069270.    
98 Barnett T , Zwiers F , Hegerl G , et al . Detecting and attributing external influences on the climate system: A review of recent advances [J]. Journal of Climate, 2005, 18(9): 1 291-1 314.
99 Henley B J , Meehl G , Power S B , et al . Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation [J]. Environmental Research Letters, 2017, 12(4). DOI:10.1088/1748-9326/Aa5cc8.
doi: 10.1088/1748-9326/Aa5cc8.    
100 Okumura Y M . Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the south Pacific [J]. Journal of Climate, 2013, 26(24): 9 791-9 796. DOI: 10.1175/Jcli-D-13-00448.1.
doi: 10.1175/Jcli-D-13-00448.1.    
101 Wang Bin , Zhou Tianjun , Yu Yongqiang . A perspective on earth system model development [J]. Acta Meteorologica Sinica, 2008, 66 (6) :857-869. DOI: 10.11676/qxxb2008.078.
doi: 10.11676/qxxb2008.078.    
王斌, 周天军, 俞永强 . 地球系统模式发展展望 [J]. 气象学报, 2008, 66(6): 857-869. DOI: 10.11676/qxxb2008.078.
doi: 10.11676/qxxb2008.078.    
102 Screen J A , Simmonds I , Deser C , et al . The tmospheric response to three decades of observed Arctic sea ice loss [J]. Journal of Climate, 2013, 26(4): 1 230-1 248. DOI: 10.1175/Jcli-D-12-00063.1.
doi: 10.1175/Jcli-D-12-00063.1.    
103 Allan R P , Liu Chunlei , Loeb N G , et al . Changes in global net radiative imbalance 1985-2012 [J]. Geophysical Research Letters, 2014, 41(15): 5 588-5 597. DOI: 10.1002/2014GL060962.
doi: 10.1002/2014GL060962.    
104 Trenberth K E , Fasullo J T . Tracking Earth's energy: From El Ni?o to global warming [J]. Surveys in Geophysics, 2012, 33(3/4): 413-426. DOI: 10.1007/s10712-011-9150-2.
doi: 10.1007/s10712-011-9150-2.    
105 Trenberth K E , Fasullo J T , Kiehl J . Earth's global energy budget [J]. Bulletin of the American Meteorological Society, 2009, 90(3): 311-323. DOI: 10.1175/2008BAMS2634.1.
doi: 10.1175/2008BAMS2634.1.    
106 Xie Shangping , Kosaka Y , Okumura Y M . Distinct energy budgets for anthropogenic and natural changes during global warming hiatus [J]. Nature Geoscience, 2015, 9(1): 29-33. DOI: 10.1038/ngeo2581.
doi: 10.1038/ngeo2581.    
107 Karl T R , Arguez A , Huang B , et al . Possible artifacts of data biases in the recent global surface warming hiatus [J]. Science, 2015, 348(6 242): 1 469-1 473.
108 Cowtan K , Way R G . Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends [J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(683): 1 935-1 944. DOI: 10.1002/qj.2297.
doi: 10.1002/qj.2297.    
109 Seneviratne S I , Rogelj J , Seferian R , et al . The many possible climates from the Paris Agreement's aim of 1.5 degrees C warming [J]. Nature, 2018, 558(7 708): 41-49.
110 Booth B B , Dunstone N J , Halloran P R , et al . Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability [J]. Nature, 2012, 484(7 393): 228-232. DOI: 10.1038/nature10946.
doi: 10.1038/nature10946.    
111 Evan A T , Vimont D J , Heidinger A K , et al . The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies [J]. Science, 2009, 324(5 928): 778-781. DOI: 10.1126/science.1167404.
doi: 10.1126/science.1167404.    
112 Otter? O H , Bentsen M , Drange H , et al . External forcing as a metronome for Atlantic multidecadal variability [J]. Nature Geoscience, 2010, 3(10): 688-694. DOI: 10.1038/ngeo955.
doi: 10.1038/ngeo955.    
113 Vecchi G A , Soden B J , Wittenberg A T , et al . Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing [J]. Nature, 2006, 441(7 089): 73-76. DOI: 10.1038/nature04744.
doi: 10.1038/nature04744.    
114 Mehta S K , Fujiwara M , Tsuda T , et al . Effect of recent minor volcanic eruptions on temperatures in the upper troposphere and lower stratosphere [J]. Journal of Atmospheric and Solar—Terrestrial Physics, 2015, 129:99-110. DOI: 10.1016/j.jastp.2015.04.009.
doi: 10.1016/j.jastp.2015.04.009.    
115 Dong Lu , Zhou Tianjun , Chen Xiaolong . Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols [J]. Geophysical Research Letters, 2014, 41(23): 8 570-8 577. DOI: 10.1002/2014GL062269.
doi: 10.1002/2014GL062269.    
116 Dong Lu , Zhou Tianjun . The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO [J]. Journal of Geophysical Research Atmospheres, 2014, 119(19): 11 272-11 287.
117 Purkey S G , Johnson G C . Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets [J]. Journal of Climate, 2010, 23(23): 6 336-6 351.
118 Palmer M D , McNeall D J , Dunstone N J . Importance of the deep ocean for estimating decadal changes in Earth's radiation balance [J]. Geophysical Research Letters, 2011, 38(13): L13707. DOI: 10.1029/2011GL047835.
doi: 10.1029/2011GL047835.    
119 Yan Xiaohai , Boyer T , Trenberth K , et al . The global warming hiatus: Slowdown or redistribution?[J]. Earths Future, 2016, 4(11): 472-482. DOI:10.1002/2016EF000417.
doi: 10.1002/2016EF000417.    
120 Liu Bo , Zhou Tianjun . Atmospheric footprint of the recent warming slowdown [J]. Scientific Reports, 2017, 7: 40 947. DOI: 10.1038/srep40947.
doi: 10.1038/srep40947.    
121 Hu Shineng , Fedorov A V . The extreme El Ni?o of 2015-2016 and the end of global warming hiatus [J]. Geophysical Research Letters, 2017, 44(8): 3 816-3 824.
122 Su Jingzhi , Zhang Renhe , Wang Huijun . Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming [J]. Scientific Reports, 2017, 7: 43 735. DOI: 10.1038/Srep43735.
doi: 10.1038/Srep43735.    
[1] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[2] 周彦昭, 李新. 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
[3] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[4] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[5] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[6] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[7] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[8] 孟春雷. 城市地表特征数值模拟研究进展[J]. 地球科学进展, 2014, 29(4): 464-474.
[9] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[10] 谢永坤, 刘玉芝, 黄建平, 王国印. 雪冰反馈对北半球经向温度梯度的影响[J]. 地球科学进展, 2013, 28(11): 1276-1282.
[11] 王会军. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 2010, 25(6): 563-570.
[12] 蒋维楣,苗世光,张宁,刘红年,胡非,李磊,王咏薇,王成刚. 城市气象环境与边界层数值模拟研究[J]. 地球科学进展, 2010, 25(5): 463-473.
[13] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[14] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[15] 蒋维楣,王咏薇,张宁. 城市陆面过程与边界层结构研究[J]. 地球科学进展, 2009, 24(4): 411-419.
阅读次数
全文


摘要