地球科学进展 ›› 2013, Vol. 28 ›› Issue (4): 490 -496. doi: 10.11867/j.issn.1001-8166.2013.04.0490

所属专题: “沙尘天气追因、影响及治理”虚拟专刊

研究论文 上一篇    下一篇

沙尘暴灾害致灾因子三维联合分布与重现期探索
李宁 1,2,3,顾孝天 1,3,刘雪琴 1,4   
  1. 1.地表过程与资源生态国家重点实验室 北京师范大学,北京100875; 2.环境演变与自然灾害教育部重点实验室北京师范大学,北京100875;3.民政部/教育部减灾与应急管理研究院 北京师范大学,北京100875; 4.国家海洋环境监测中心,辽宁大连116023
  • 收稿日期:2012-10-18 修回日期:2013-03-01 出版日期:2013-04-10
  • 通讯作者: 李宁(1958-),女,江苏镇江人,教授,主要从事自然灾害风险评估和管理研究. E-mail:ningli@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“基于多维联合分布理论的沙尘暴风险评估Copula模型研究”(编号:41171401);地表过程与资源生态国家重点实验室开放课题“灾害风险评估中多要素的相关结构与联合概率分析”(编号:2013KF-09)资助.

Return Period Analysis Based on Joint Distribution of Three Hazards in Dust Strom Disaster

Li Ning 1,2,3, Gu Xiaotian 1,3, Liu Xueqin 1,4   

  1. 1.State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing100875, China; 2. Key Laboratory of Environment Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing100875, China; 3.Academy of Disaster Reduction and Emergency
  • Received:2012-10-18 Revised:2013-03-01 Online:2013-04-10 Published:2013-04-10

探讨多致灾因子对Copula联合分布模型在三维多致灾因子综合分析中的扩展。针对沙尘暴形成的3个基本条件:大风、丰富的沙尘源和不稳定的大气层结,以内蒙古镶黄旗1990—2008年的强沙尘暴灾害事件为案例,建立了经向环流指数、地面平均最大风速和地表土壤湿度3个基本特征变量的联合分布,计算了基于联合分布的联合重现期。研究表明,镶黄旗强沙尘暴事件的三维致灾因子符合Frank Copula函数构建条件,该函数能够很好地描述强沙尘暴灾害3个基本特征变量的联合分布,具备扩展到三维的能力。相对于二维Copula函数拟合效果,三维Frank Copula在中高尾部分的拟合有很大提高。三变量联合重现期的计算结果更加贴近实际情况。

This article discussed the extension of Copula joint distribution model in 3D multiple hazards for disaster comprehensive analysis. Based on three basic conditions of formation of severe dust storms: wind speed, abundant sand source and unstable atmospheric stratification, it established Copula joint distribution by the three basic characteristics of meridional index, the daily average maximum wind speed and soil moisture  is established by taking dust storm events occurred in Xianghuanqi station in Inner Mongolia from 1990-2008 as a case. The return period under different encounter is calculated by the distribution.
The cases study indicates that the three-dimensional hazards of severe dust storm of Xianghuanqi well scalable ability to the construction conditions of the Frank Copula function. This function well described the joint distribution of the three variables of severe dust storms.By comparison with the return period bases on single variable and bivariable, the joint return periods with 3D variable are obtained with more realistic, and the 3D Frank Copula fits better occurrence probability on middle and high parts.

中图分类号: 

[1]Wang Shigong, Zhou Zijiang, Shang Kezheng, et al. Dust Storm Disaster[M]. Beijing: China Meteorological Press, 2010: 23-28.[王式功,周自江,尚可政,等. 沙尘暴灾害[M]. 北京:气象出版社, 2010: 23-28.]

[2]Zhang Chong, Zhao Jingbo. Relationships between the changes of sandstorm activities in spring and climatic factors in the Northwest China in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2008, 22(8): 129-132.[张冲,赵景波. 我国西北近50年春季沙尘暴活动的变化与气候因子相关性研究[J]. 干旱区资源与环境, 2008,22(8):129-132.]

[3]Wang Jiquan, Li Weide, Zhu Zhongming. Risk analysis of severe group dust-storms in the eastern part of Northwest China[J]. Journal of Arid Land Resources and Environment, 2008, 22(4): 118-121.[王积全,李维德,祝忠明. 西北地区东部群发性强沙尘暴风险分析[J]. 干旱区资源与环境, 2008,22(4):118-121.]

[4]Zuo Hejun, Gou Mangmang, Li Gangtie, et al. Study on sandstorm forecasting with BP neural network method[J]. Journal of Desert Research, 2010, 30(1):193-197.[左合君,勾芒芒,李钢铁,等. BP网络模型在沙尘暴预测中的应用研究[J]. 中国沙漠, 2010, 30(1):193-197.]

[5]Fan Yida, Shi Peijun, Zhou Tao, et al. The impact factor analysis of dust storm disaster in Northern China[J]. Advances in Earth Science, 2007, 22 (4): 350-356.[范一大,史培军,周涛,等.中国北方沙尘灾害影响因子分析[J].地球科学进展, 2007, 22 (4): 350-356.]

[6]Sklar A. Fonctions de repartition à n dimensions et leurs marges[M]. Publication de l’Institut de Statistique de l’Université de Paris, 1959, 8: 229-231.

[7]Grimaldi S, Serincesco F. Asymmetric copula in multivariate flood frequency analysis[J]. Advances in Water Resources,2006, 29(8):1 155-1 167.

[8]Li Ning, Liu Xueqin, Wu Jidong. The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution[J].Risk Analysis, 2013,33(1):134-145.

[9]Nelsen B. An Introduction to Copulas[M]. New York: Springer, 1999:65-78.

[10]Zhang Guangxing, Li Xia. Research status of sand-dust storm observation and classification standard[J]. Journal of Desert Research, 2003, 23(5):586-591.[张广兴, 李霞. 沙尘暴观测及分级标准研究现状[J].中国沙漠,2003, 23(5):586-591.]

[11]Jiao Meiyan. Dust Weather Almanac(2001)[M]. Beijing:China Meteorological Press,2001.[矫梅燕.沙尘天气年鉴(2001年)[M]. 北京:气象出版社,2001.]

[12]Jiao Meiyan. Dust Weather Almanac(2006)[M]. Beijing: China Meteorological Press, 2006.[矫梅燕. 沙尘天气年鉴(2006年)[M]. 北京:气象出版社,2006.]

[13]Inner Mongolia Autonomous Region Bureau of Statistics. Inner Mongolia Almanac(1993)[M]. Beijing: China Statistics Press,1993.[内蒙古自治区统计局. 内蒙古统计年鉴(1993年)[M]. 北京:中国统计出版社,1993.]

[14]Inner Mongolia Autonomous Region Bureau of Statistics. Inner Mongolia Almanac(2001)[M]. Beijing: China Statistics Press, 2001.[内蒙古自治区统计局. 内蒙古统计年鉴(2001年)[M]. 北京:中国统计出版社,2001.]

[15]Zhang Qiang, Li Jianfeng, Chen Xiaohong, et al. Spatial variability of probability distribution of extreme precipitation in Xinjiang[J]. Acta Geographica Sinica, 2011, 66(1):3-12.[张强,李剑锋,陈晓红,等.基于Copula函数的新疆极端降水概率时空变化特征[J].地理学报,2011, 66(1):3-12.]

[1] 石先武,谭骏,国志兴,刘钦政. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013, 28(8): 866-874.
[2] 李彰俊;李宁;顾卫;吴学宏. 内蒙古中西部地区土壤水分对沙尘暴的贡献[J]. 地球科学进展, 2005, 20(1): 24-028.
[3] 顾卫,蔡雪鹏,谢锋,李彰俊,吴学宏. 植被覆盖与沙尘暴日数分布关系的探讨———以内蒙古中西部地区为例[J]. 地球科学进展, 2002, 17(2): 273-277.
阅读次数
全文


摘要