地球科学进展 ›› 2010, Vol. 25 ›› Issue (8): 836 -843. doi: 10.11867/j.issn.1001-8166.2010.08.0836

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

喜马拉雅北部地区春季大气特征及日变化分析
刘新 1,刘晓汝 1,2,马耀明 1,李伟平 3   
  1. 1.中国科学院青藏高原研究所青藏高原环境变化与地表过程实验室,北京 100085;2.中国科学院研究生院,北京 100049;
    3.国家气候中心,北京 100081
  • 收稿日期:2010-03-31 修回日期:2010-05-05 出版日期:2010-08-10
  • 通讯作者: 刘新 E-mail:lx@itpcas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“青藏高原和亚印太热力作用对亚洲季风年际、年代际变化的影响”之第一课题“青藏高原地面与大气热量与水分交换过程的观测和遥感监测研究”(编号:KZCX2-YW-Q11-01);国家重点基础研究发展规划项目“青藏高原环境变化及其对全球变化的响应与适应对策”(编号:2005CB422000);国家自然科学基金资助项目“西藏南部地区地表过程与大气环流相互作用机理研究”(编号:40875037)和“气候模式中积雪参数化方案的改进与积雪气候效应的数值模拟研究”(编号:40975042)资助.

An Analysis of Diurnal Variations of Atmospheric Features over the Northern Region of the Himalayas in Spring

Liu Xin 1, Liu Xiaoru 1,2, Ma Yaoming 1, Li Weiping 3   

  1. 1.Laboratory of Tibetan Environment Changes and Land Surface Processes (TEL), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China;
    2.The Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3.National Climate Center, Beijing 100081, China
  • Received:2010-03-31 Revised:2010-05-05 Online:2010-08-10 Published:2010-08-10
  • Contact:  E-mail:lx@itpcas.ac.cn

利用珠峰北部地区的观测资料和AIRS卫星遥感资料,分析了喜马拉雅北部地区的大气日变化及其垂直结构。结果发现喜马拉雅北部地区气温日变化具有明显的单峰单谷型特征,一天气温最高值出现在18:00左右,最低值出现在早上7:00~9:00。风速的日变化呈现单峰型特征。气压的平均日变化呈双峰双谷型分布特征,气压极大值出现在2:00和12:00,气压极小值出现在6:00和19:00时,其中19:00出现气压最小值。感热通量、潜热通量的平均日变化和气温日变化具有一致性,春季感热通量大于潜热通量。净辐射通量的日变化特征是单峰型特征,每日最大值出现的时间比感热通量及潜热通量的最大值出现的时间早2个小时。引起高原地区日变化剧烈有2个主要原因:一是高原地区大气柱的质量较小,对太阳辐射的削弱较小,且相同的辐射加热和冷却可使较少大气产生较大温度变化;二是高原地区是大气云光学厚度较小的区域,由此可使地面在日间接受较强烈的太阳短波辐射而增温较大,在夜间又接受较小的大气长波逆辐射而降温较大。

The observation data collected by Atmospheric and Environmental Comprehensive Observation and Research Station on Mt. Qomolangma, Chinese Academy of Sciences (AECORSQ,CAS) and the AIRS(Atmospheric Infrared Sounder) satellite data obtained during the period of from March to May of 2008 are employed to analyze the diurnal changes and the vertical features of atmosphere over the northern region of the Himalayas in spring. The results show that the diurnal mean variation of surface air temperature has one-peak-one-vale pattern. The highest temperature  occurred around 18:00  Beijing  local time and the lowest was between 7:00 to 9:00 Beijing local time.The diurnal mean variation of wind speed has onepeak pattern, and the air pressure has two-peaks-two-vales pattern while the lowest occurred at 19:00 Beijing local time. The diurnal mean variations of sensible heat flux and latent heat flux were consistent with the diurnal change of air temperature. The pattern looks like the net radiation diurnal pattern, but the peak time appears about 2 hours later. The sensible heating flux is stronger than latent heating flux over the Tibetan Plateau in spring. There are two main reasons which caused the remarkable diurnal variation of air temperature over the Tibetan Plateau while the mass of the atmosphere over the plateau is much less than the mass of atmosphere over other regions, and it can gain more solar shortwave radiation and less shortwave radiation while the optical depth over this region is smaller.

中图分类号: 

[1] Ye Duzheng, Wu Guoxiong. The role of heat source of the Tibetan Plateau in the general circulation[J]. Meteorological and Atmospheric Physics,1998,67(1/4):181-198.
[2] Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].Journal Meteorological Society of Japan,1992, 70:319-951.
[3] Bao Qing, Wang Bin,Liu Yimin, et al. The impact of the Tibetan Plateau warming on the east Asian summer monsoon—A study of numerical simulation[J].Chinese Journal of Atmospheric Sciences,2008,32(5):997-1 005.[包庆, Wang Bin, 刘屹岷,等.青藏高原增暖对东亚夏季风的影响——大气环流模式数值模拟研究[J].大气科学, 2008, 32(5):997-1 005.]
[4] Ma Yaoming, Yao Tandong, Wang Jiemin,et al. The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J].Advances in the Earth Science,2006,21(12):1 215-1 223.[马耀明,姚檀栋,王介民,等.青藏高原复杂地表能量通量研究[J].地球科学进展,2006,21(12): 1 215-1 223.]
[5] Ye Duzheng, Gao Youxi. Tibetan Plateau Meteorology[M]. Beijing:Science Press,1979:1-278.[叶笃正, 高由禧.青藏高原气象学[M].北京:科学出版社,1979:1-278.]
[6] Kuo H L, Qian Y F. Influence of the Tibetan Plateau on cumulative and diurnal changes of weather and climate in summer[J].Monthly Weather Review,1981,109:2 337-2 356.
[7] Song Yan, Ji Jinjun, Sun Dan. Global climatic anomalous background analyses of  the Asian-African summer monsoon weakening in the mid-1960s[J].Chinese Journal of Atmospheric Sciences(in Chinese),2009,33(2):313-324.[宋燕,季劲钧,孙丹. 20世纪60年代中期亚非夏季风减弱的全球气候背景异常分析[J].大气科学,2009,33(2):313-324.]
[8] Wang Tongmei, Wu Guoxiong, Wan Rijin. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area[J].Plateau Meteorology,2008,27(1):1-9.[王同美,吴国雄,万日金.青藏高原的热力和动力作用对亚洲季风区环流的影响[J].高原气象,2008,27(1):1-9.]
[9] Zhong Lei, Ma Yaoming, Su Zhongbo,et al. Atmospheric turbulence and land-atmosphere energy transfer characteristics in the surface layer of the northern slope of Mt. Qomolangma area[J].Advances in the Earth Science,2006,21(12): 1 293-1 303.[仲雷,马耀明,苏中波,等.珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展, 2006,21(12):1 293-1 303.]
[10] Li Maoshan, Ma Yaoming, Hirohiko Ishikawa, et al.Characteristics of micrometeorlogical elements near surface and soil on the northern slop of Mt. Qomolangma area[J].Plateau Meteorology,2007,26(6):1 263-1 268.[李茂善,马耀明, Hirohiko Ishikawa, 等. 珠穆朗玛峰北坡地区近地层及土壤微气象要素分析[J].高原气象,2007,26(6):1 263-1 268.]
[11] Hu Zeyong, Cheng Guodong,Gu Lianglei,et al.Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang railway[J].Advances in the Earth Science,2006,21(12): 1 304-1 313.[胡泽勇,程国栋,谷良雷,等.青藏高原铁路路基表面太阳总辐射和温度反演方法[J].地球科学进展,2006,21(12): 1 304-1 313.]
[12] Liu Huizhi, Feng Jianwu,Zou Han,et al.Turbulent characteristics of the surface layer in the Rongbuk valley on the northern slope of Mt. Qomolangma[J].Plateau Meteorology,2007,26(6):1 151-1 161.[刘辉志,冯健武,邹捍,等.青藏高原珠峰绒布河谷地区近地层湍流输送特征[J].高原气象,2007,26(6):1 151-1 161.]
[13] Zou Han, Zhou Libo, Ma Shupo,et al.Observation of diurnal circulation on the northern slope of Mt. Qomolangma[J].Plateau Meteorology,2007,26(6):1 123-1 140.[邹捍,周立波,马舒坡,等.珠穆朗玛峰北坡局地环流日变化的观测研究[J].高原气象,2007, 26(6):1123-1 140.]
[14] Ji Guoliang, Jiang Hao, Lv Lanzhi. Characterics of longwave radiation over the Qinghai-Xizang Plateau[J].Plateau Meteorology,1995,14(4):451-458.[季国良,江灏,吕兰芝.青藏高原的长波辐射特征[J].高原气象,1995,14(4):451-458.]

[1] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[2] 吴巧燕. “海洋混合层日变化的分布和成因研究”研究成果介绍[J]. 地球科学进展, 2013, 28(10): 1175-1176.
[3] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[4] 余珊珊,辛晓洲,柳钦火. 大气下行长波辐射参数化模型的比较[J]. 地球科学进展, 2011, 26(7): 751-762.
[5] 孙维君,秦翔,徐跃通,吴秀平,刘宇硕,任贾文. 祁连山老虎沟12号冰川辐射各分量年变化特征[J]. 地球科学进展, 2011, 26(3): 347-354.
[6] 王维真,徐自为,李新,王介民,张智慧. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[7] 王建林,温学发 ,孙晓敏,王秋凤,王辉民,刘允芬. 涡动相关系统和小孔径闪烁仪观测的森林显热通量的异同研究[J]. 地球科学进展, 2010, 25(11): 1217-1227.
[8] 艾力·买买提明,何清,霍文,刘新春. 塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J]. 地球科学进展, 2010, 25(11): 1228-1236.
[9] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[10] 王润元,刘宏谊,张 强,赵 鸿,杨兴国,王鹤龄,张 凯,杨启国,王 胜. 夏季草原与戈壁地表能量分析[J]. 地球科学进展, 2007, 22(6): 642-648.
[11] 刘新,吴国雄,李伟平. 夏季青藏高原加热和环流场的日变化[J]. 地球科学进展, 2006, 21(12): 1273-1282.
[12] 上官行健;王明星;沈壬兴. 稻田CH 4的排放规律[J]. 地球科学进展, 1993, 8(5): 23-36.
[13] 陈德章;王明星. 稻田CH 4排放和土壤、大气条件的关系[J]. 地球科学进展, 1993, 8(5): 37-46.
阅读次数
全文


摘要