地球科学进展 ›› 1993, Vol. 8 ›› Issue (5): 23 -36. doi: 10.11867/j.issn.1001-8166.1993.05.0023

全球变化研究 上一篇    下一篇

稻田CH 4的排放规律
上官行健;王明星;沈壬兴   
  1. 中国科学院大气物理研究所,北京100029
  • 收稿日期:1993-04-09 出版日期:1993-09-01

REGULARITY OF METHANE EMISSION FROM RICE PADDY FIELDS

Shangguan Xingjian,Wang Mingxing and Shen Renxing   

  1. Institute of Atmospheric Phvsice, Academia Sinica, Beijing 100029
  • Received:1993-04-09 Online:1993-09-01 Published:1993-09-01

通过对我国长江中下游地区、西南地区及华中地区这三大主要水稻区稻田CH4排放的多年测量,描述了稻田CH4排放的一般规律及特征。稻田CH4排放的日变化有三种型式,即下午最大值型式、夜间最大值型式以及下午、夜间双峰型式,导致这三种型式的主要原因是CH4排放路径的日变化;不同品种水稻的不同生理特性、天气条件会通过改变CH4排放路径的日变化来改变CH4排放日变化的型式;随着水稻生长,CH4排放日变化幅度也会随着变化。 早稻与晚稻稻田CH4排放的季节变化型式不一致。早稻的CH4排放一般出现三个排放峰值,其中第一个与第三个峰值是由土壤中CH4的产生率增加引起的,第二个峰值则是由于CH4排放路径的畅通引起的。四川地区单季稻CH4排放的季节变化与早稻比较一致,但是没有第一个排放峰值的出现。引起早、晚稻不同季节变化的原因是水稻生长季节中气温的季节变化。灌溉水状态也能够较大程度的影响稻田CH4的排放的季节变化。 含SO42-的肥料能够降低CH4的排放,但其作用的大小取决于土壤中有机物质(肥)的数量;施尿素、KCl也能够使CH4排放降低,但它的降低效应没有有机肥使CH4排放增大的正效应大,这说明有机肥对CH4排放的影响很大,而在空气中堆腐过的沼渣肥使稻田CH4的排放大大降低。不同的施肥使稻田CH4排放的温度效应也发生变化。 不同灌溉方式对CH4排放率的影响较大,深灌方式在早稻期降低CH4产生率,但在气温较高的晚稻期则反之;以3日为间隔的间隔灌溉没有使整个生长期的CH4排放有较大变化;湿润灌溉田中的CH4排放无论在早稻还是在晚稻都很低。 三个地区稻田CH4排放率都存在年际变化。平均来说,长江中下游地区早稻排放率为0.39mg·m-2·d-1,晚稻为0.75mg·m-2·d-1;华中地区早稻为0.28mg·m-2·d-1,晚稻为0.41mg·m-2·d-1;西南地区单季稻CH4排放率为1.41mg·m-2·d-1

CH4 emission rates from rice paddy fields have been measured in the past several years over the three main rice culture regions in China, which are middle and lower reaches of Changjiang River, southwest region and middle China region. The regularity and characteristics of CH4 emission are described in this paper. Three types of diurnal variation of methane emission have been observed, which are afternoon - maximum mode, night -maximum mode and two-peak mode with maxima occured both in the afternoon and at night. The diurnal variation of CH4 transport efficiency causes these three types of diurnal variation pattern. Different variety of rice plant and weather condition may change the diurnal variation of CH4 transport ,hence affecting the diurnal variation pattern of CH4 emission. With the growing of rice plants. the varying range of diurnal CH4 emission rates also changes.The seasonal pattern of CH4 emission rates from rice paddies for early rice is different from that of late rice. For early rice, CH4 emission normally shows three maxima. The first and the third are caused by high CH4 production rates in the paddy soil, and the second is caused by high CH4 transport efficiency. For late rice. CH4 emission appears highest shortly after rice is transplanted, and then decreases gradually with rice growing. The seasonal variation pattern of CH4 emission of single rice in Sichuan province is similar to that of early rice, but without the first peak. Different trend of air temperature can explain the difference in seasonal pattern of methane emission for early and late rice . The status of flooded water may also greatly affect the seasonal variation of methane emission.The fertilizer containing SO42- may reduce CH4, emission, but its effect depends on the amount of organic matter in the soil. The use of urea and KCl may also lower CH4 emission. But its reduction effect is smaller than the positive enhencement by organic manure, which indicates the great importance of organic fertilizer. The fermented manure from bio gas pits which has been stored up in the open air may largely reduce methane emission. Different fertilizer treatment can also change temperature effect of CH4 emission.Different irrigation method has great influence on CH4 emission. Deep water cover reduces CH4 emission for early rice, while the opposite is ture for late rice. A 3 - day - interval frequent drainage dose not affect CH4 emission too much for the whole growing season. The CH4 emission rate from the field received constant moisture is very low for both early and late rice.Interannual variation of CH4 emission in all the three regions has been observed. The mean emission rate in middle and lower reaches of Changjiang River is 0. 39mg · m -2·d-1 and 0. 75mg · m-2 · d-1 for early and late rice respectively, while in middle China region it is 0. 28mg · m-2 · d-1 and 0. 41mg · m-2 · d-1 respectively, and for the single rice growing region in Sichuan it is 1. 41mg · m-2 · d-1.

[1]Cicerone R J and Shetter J D. Sources of atmospheric methane:Measurements in rice paddies and a discussion .J Geophys Res, 1981, 86 :7203--7209 .
[2]Cicerone R J,Shetter J D and Delwiche C C. Seasonal variation of methane flux from a California rice paddy .J Geophys Res, 1983, 88 :11022--11024 .
[3]W. Seiler,A. Holzapfel-Pschorn,R. Conrad,D. Scharffe. Methane emission from rice paddies[J]. Journal of Atmospheric Chemistry, 1983,1(3) .
[4]Holzapfel--Pschorn A and seiler W. Methane emission during a vegetation period from an Italian rice paddy .J Gophys Res, 1986, 91 :11803--11814 . 
[5]Schtz H et al. A3--year continuous record on the influence of daytime,season and fertilizer treatment on methne emission rates from an Italian rice Paddy .J Geophys Res, 1989, 94 :16405--16416 .
[6]Xu,Q. Cropping system in relation to fertility of paddy soils in China .Proceedings of Symposium on Paddy Soil. Berlin: Science Press, Beijing-Springer, 1981, :92~100 .
[7]戴爱国,王明星,沈壬兴,H.Schütz,W.Seiler,H.Rennenberg,吴海宝. 我国杭州地区秋季稻田的甲烷排放[J]. 大气科学, 1991,(1):102-110 .
[8]Wang M X et al.CH4 emission from a Chinese rice paddy field.Acta Meteorologica.Sinica,1990,4,265-274
[9]黄俊.中国西南地区稻田CH4排放的实验研究.中国科学院大气物理所硕士论文,1990
[10]Wang Mingxing,Shangguan Xingjian,Shen Renxing,Wassmann Reiner,Seiler Wolfgang. Methane production, emission and possible control measures in the rice agriculture[J]. Advances in Atmospheric Sciences, 1993,10(3) .
[11]Wassmann Reiner,Wang Mingxing et al.First records of a field experiment on fertilizer effect on methane emission from rice fields (Human province,PR China).Geophys.Res.Letters,1993(待发表)

[1] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[2] 韩瑞玲,路紫,姚海芳. 航空碳排放环境损害评估方法的动态化转换、应用与比较研究[J]. 地球科学进展, 2019, 34(7): 688-696.
[3] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[4] 赵燕慧, 路紫. 航线网络碳排放模型及外部性要素分析[J]. 地球科学进展, 2018, 33(1): 103-111.
[5] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[6] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[7] 鲁易, 张稳, 李婷婷, 周筠珺. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
[8] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[9] 赵海霞, 蒋晓威, 董雅文, 崔建鑫. 城市污水处理设施空间格局优化研究——以江苏省淮安市为例[J]. 地球科学进展, 2014, 29(3): 404-411.
[10] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[11] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[12] 李平星,曹有挥. 产业转移背景下区域工业碳排放时空格局演变——以泛长三角为例[J]. 地球科学进展, 2013, 28(8): 939-947.
[13] 吴自军,任德章,周怀阳. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展, 2013, 28(7): 765-773.
[14] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[15] 王勤花, 张志强, 曲建升. 家庭生活碳排放研究进展分析[J]. 地球科学进展, 2013, 28(12): 1305-1312.
阅读次数
全文


摘要