地球科学进展 ›› 2006, Vol. 21 ›› Issue (8): 857 -862. doi: 10.11867/j.issn.1001-8166.2006.08.0857

综述与评述 上一篇    下一篇

“白云岩问题”与“前寒武纪之谜”研究进展
王勇   
  1. 西北大学地质学系, 陕西 西安 710069
  • 收稿日期:2005-10-26 修回日期:2006-07-24 出版日期:2006-08-15
  • 通讯作者: 王勇 E-mail:wy2_cq@petrochina.com.cn

Dolomite Problem and Precambrian Enigma

Wang Yong   

  1. Northwest University, Xi′an 710069, China
  • Received:2005-10-26 Revised:2006-07-24 Online:2006-08-15 Published:2006-08-15

白云岩的成因是沉积学界倍受关注的研究主题;众多的白云岩化模式可以用来解释各种成岩白云岩的成因;然而原生白云岩的成因一直是困扰沉积学界的难题,被称为“白云岩问题”。究其原因主要在于:在近地表环境的常温、常压实验条件下不能生成完美有序的白云石矿物。近年来,野外观测和实验模拟研究发现某些微生物的生命活动可导致白云石于地表常温、常压条件下发生沉淀。如硫酸盐还原细菌和产烷菌的调节作用可以克服白云石晶核形成的动力学障碍,在这些厌氧菌的参与下,白云石晶核形成和沉淀并不需要高镁离子和过饱和状态的溶液环境。这种微生物学和沉积学的结合代表了一个新的研究方向,同时也为解决“白云岩问题”带来了新希望。泥晶白云岩化作用(mimetic dolomization)可以保留原矿物(文石或方解石)的晶形、原岩的微细组构,对解释地史时期保存原生构造的白云岩具重要的启示。“前寒武纪之谜”是指前寒武纪叠层石中缺乏钙化蓝细菌化石的现象。参与碳酸盐岩叠层石建造的微生物群组成可能随着地质历史的演化发生变化,蓝细菌在显生宙的叠层石建造过程中起主导作用,细胞体积更小的真细菌很可能是参与前寒武纪叠层石建造的主要微生物。

The origin of dolomites is a research topic attracting great attention in sedimentology. Many dolomitization models have been invoked to interpret the origination of virious diagenetic dolomites. However, the genesis of early-formed dolomites has long been an enigma in sedimentology, often referred to as the "Dolomite Problem". This problem arises from the fact that scientists have not yet been successful in the laboratory in precipitating perfectly ordered dolomite at the normal temperatures and pressure that occur at Earth's surface. The recent field and laboratory experiments show that some microbes play important roles in precipitation of dolomite under conditions of Earth's surface. For example, the direct mediation of sulfate-reducers and methanogens can overcome the kinetic barrier to dolomite nucleation, and that they may play an active role in the formation of this mineral in natural environments. In these anaerobes involved system, neither extremely Mg-rich fluids nor highly supersaturated conditions are required for the nucleation and precipitation of dolomite. This integrating microbiology into the carbonate sedimentology opens a new research direction and also throws a new light on the “Dolomite Problem”. Mimetic dolomization, where the precursor fabrics are excellently preserved, has important implications on interpreting the genesis of dolostone with original fabrics preserved. The “Precambrian enigma” refers to the scarcity of calcified cyanobacteria in Precambrian stromatolites. There have been subsequent changes in the composition stromatolite biota through Earth's history. Smaller eubacteria may have greater involvement than cyanobacteria in stromatolite formation in the Precambrian, and cyanobacteria may enter stromatolite building biota until the latest Neoproterozoic.

中图分类号: 

[1] Sam Bogg Jr. Principles of Sedimentology and Stratigraphy [M]. Upper Saddle River: Prentice Hall, 2001:1-726.

[2] Mei Mingxiang, Ma Yongsheng, Zhou Pikang, et al. Sedimentology of Carbonate Rocks [M]. Beijing: Earthquake Press, 1997:1-306. [梅冥相、马永生、周丕康,. 碳酸盐岩沉积学导论[M].北京:地震出版社, 1997:1-306.]

[3] Schidlowski M. Early life and mineral resources [J]. Nature and Resources, 1985, 21: 1-7.

[4] Fan D, Hein J R, Jye J. Ordovician reef-hosted Jiaodingshan Mn-Co deposit and Dawashan Mn deposit, Sichuan Province, China [J]. Ore Geology Review, 1999, 15: 135-151.

[5] Leidner G. Gewinnung und Verarbeitung von Kalkstein und Kalk in Niedersachsen [J]. Ver ffentl Nieders chs Akad Geowiss,1994, 9: 10-18.

[6] Feng Zengzhao, et al. Lithofacies Paleogeography of Early Paleozoic of North China Platform [M]. Beijing: Geology Press, 1990:1-269. [冯增昭等. 华北地台早古生带岩相古地理 [M]. 北京: 地质出版社, 1990:1-269.]

[7] Given R K, Wilkinson B H. Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation [J]. Journal of Sedimentary Petrology,1976, 57: 1 068-10 787.

[8] Feng Z Z, Jin Z K. Types and origin of dolostones in the lower Palaeozoic of the North China platform[J]. Sedimentary Geology, 1994, 93: 279-290.

[9] Feng Z Z, Zhang Y S, Jin Z K. Type, origin and reservoir characteristics of dolostones of the Ordovician Majiagou group, Ordos, North China platform [J]. Sedimentary Geology, 1998, 118: 127-140.

[10] Zenger D H, Bourrouilh-Le Jan F G, Carozzi. Dolomieu and the first description of dolomite[C]Purser B M, Zenger D H, eds. Dolomites: A volume in honor of Doloieu: International Association of Sedimentologists, Special Publication. Oxford: Blackwell, 1994:21-28.

[11] Usdowski E. Synthesis of dolomite and geochemical implications[C]Purser B M, Zenger D H, eds. Dolomites: A Volume in Honor of Doloieu: International Association of Sedimentologists, Special Publication. Oxford: Blackwell, 1994: 345-360.

[12] Lumsden D N, Lloyd R V. Three dolomites[J]. Journal of Sedimentary Research,1997, 67: 381-396.

[13] Gains A M. Dolomitization kinetics: Recent experimental studies[C]Zenger D H, Dunham J B, Rthington R L, eds. Concept and Models of Dolomitization: Society Economie Paleontologists and Mineralogists, Special Publication 28 , 1980:81-86.

[14] Land L S. Failure to precipitate dolomite at 25 degrees C from dilute solution despite 1000-fold oversaturation after 32 years [J]. Aquatic Geochemistry, 1998, 4: 361-368.

[15] Warthmann R, van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology,2000,28:1 091-1 094.

[16] van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation [J]. Sedimentology, 2003, 50: 237-245.

[17] Moreira N F, Walter L M, Vasconcelos C, et al. Role of sulfide oxidation in dolomization: Sediment and porewater geochemistry of a modern hypersaline lagoon system [J]. Geology, 2004, 32: 701-704.

[18] Burne S J, Mckenzie J A, Vasconcelos. Dolomite formation and biogeochemistrical cycles in the Phanerozoic [J]. Sedimentary Geology, 2000, 47 (suppl.): 49-61.

[19] Holland H D, Zimmermann H. The dolomite problem revisited [J]. International Geology Review, 2000, 42: 481-490.

[20] Hardie L A. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas [J]. Geology, 2003, 31: 785-788.

[21] Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines [J]. Geology, 2003, 31: 857-860.

[22] Flugel E. Microfacies of Carbonate Rocks [M]. Berlin: Springer, 2004:1-975.

[23] Mckenzie J A, Vasconcelos C. How comparative carbonate sedimentology helped to solve the "dolomite problem"[J]. Geological Society of America Abstracts with Programs, 2005, 37: 182.

[24] Bernaconi S M. Geochemical and Microbial Controls on Dolomite Formation in Anoxic Environment: A Case Study from the Middle Triassic (Ticino, Switzerland) [M]. Contributions to Sedimentology, Stuttgart: Schweizerbart'sche Verlagsbuchhandlund,1994, 19: 1-109.

[25] Gournay J, Folk R L, Kirkland B L. Evidence for nannobacterially precipitated dolomite in Pennsylvanian carbonates[C].Camoin G, Arnaud-Vanneau A. convenors, International Workshop on Microbial Mediation in Carbonate Diagenesis.1997, 97: 33 (Abstract Book, International Association of Sedimentologists).

[26] Vasconcelos C, Mckenzie J A, Bernaconi S, et al. Microbial mediation as a possible mechanism for nature dolomite formation at low temperature [J]. Nature, 1995, 377: 220-222.

[27] Vasconcelos C, Mckenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions, Lagoa Vermelha, Rio de Janeiro, Bruzil [J]. Journal of Sedimentary Research, 1997, 67: 378-390.

[28] Roberts J A, Bennett P C, Gonz lez L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology,2004, 32: 277-280.

[29] Sibley D F. Secular changes in the amount and texture of dolomite[J]. Geology,1991, 19: 151-154.

[30] Corsetti F A, Kidder D L, Marenco P J. Trends in oolite dolomization across the Neoproterozoic-Cambrian boundary: A case study from Death Valley, California [J]. Sedimentary Geology, 2006, in press.

[31] Brennan S T, Lowenstein T K, Juske H. seawater chemistry and the advent of biocalcification [J]. Geology, 2004, 32: 473-476.

[32] Marenco P J, Corsetti F A, Bottjer D J, et al. Sulfur isotope anomalies across the Permo-Triassic boundary and through the Early Triassic[M]. International Symposium on Triassic Chronostratigraphy and Biotic Recovery, 23-25 May 2005, Chaohu, ChinaAlbertiana, 33: 57.

[33] Riding R. Calcified Cyanobacteria in Phanerozioc Reefs [M]. Algae in Reefs Symposium, Granada 1989, Abstract,1989:3-4.

[34] Riding R. Evolution of algal and cyanobacterial calcification[C]Bengtson S, ed. Early Life on Earth. New York: Columbia University Press, 1994:426-438.

[35] Riding R. Stromatolite decline: A brief reassessment [J]. Facies, 1997, 36: 227-230.

[36] Riding R. Temporal variation in calcification in marine cyanobacteria [J]. Journal of the Geological Society of London, 1992, 149: 979-989.

[37] Awramik S M, Riding R. Role of algal eukaryotes in subtidal columnar stromatolite formation [J]. Proceedings of the National Academy of Sciences, USA, 1988,85:1 327-1 329.

[38] Riding R, Awramik S M, Winsborough B M, et al. Bahamian giant stromatolites: Microbial composition of surface mats [J]. Geological Magazine, 1991, 128: 227-234.

[39] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms [J]. Sedimentology, 2000, 47 (suppl.1): 179-214.

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[5] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[6] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[7] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[8] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[9] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[10] 张兴波,蒋勇军,邱述兰,曹敏,胡毅军. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.
[11] 葛云锦,陈勇,周瑶琪,周振柱. 实验模拟碳酸盐岩储层包裹体对油气充注的响应[J]. 地球科学进展, 2011, 26(10): 1050-1056.
[12] 黄思静,Hairuo QING,胡作维,王春梅,郜晓勇,邹明亮,王庆东. 四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展, 2007, 22(5): 495-503.
[13] 刘燕学;柳永清;旷红伟. 一种严格受控于环境和时间的特殊碳酸盐岩——臼齿构造碳酸盐岩[J]. 地球科学进展, 2005, 20(7): 710-716.
[14] 韩贵琳;刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
[15] 于晓果;李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19(6): 947-954.
阅读次数
全文


摘要