Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (11): 1231-1238    DOI: 10.11867/j.issn.1001-8166.2015.11.1231
研究论文     
威德尔海的重磁场特征及其构造意义
胡毅1, 王立明1, 钟贵才1, 房旭东1, 许江1, 何慧优2
1. 国家海洋局第三海洋研究所,福建 厦门361005;
2. 迈勤能源技术服务有限公司,北京 100004
Gravity and Magnetic Characteristics of the Weddell Sea and Its Tectonic Significance
Hu Yi1, Wang Liming1, Zhong Guicai1, Fang Xudong1, Xu Jiang1, He Huiyou2
1.Third Institute of 0ceanography, State Oceanic Administration, Coast and Ocean Environmental Geology Open Laboratory, Xiamen 361005, China;
2.Maiqin Nengyuan Jishu Fuwu Limited Liability Company, Beijing 100004, China
 全文: PDF(8771 KB)  
摘要: 威德尔海是南极洲最大的边缘海。通过搜集威德尔海的重磁资料、历史文献以及总结前人的相关研究成果,介绍了威德尔海的重磁场基本特征以及指示的构造意义。威德尔海最显著的重力特征是在威德尔海的中北部分布着以鲱骨式结构展布的一系列NW-SE向重力异常,其上可见一系列弧形、上凹的以E-W为主要方向的磁力异常。沿南极半岛陆架边缘的重力高一直可延伸到南侧海域,高值区与陆架平行,但是在磁异常上反映不明显。威德尔海原始海盆的形成约在150 Ma,并伴随南北向张裂,随后在140 Ma发生东西向扩张,到约120 Ma异常形成现代南极洲、非洲和南美洲板块的分布格局,鲱骨式结构异常脊也形成于该时期。
关键词: 重力异常南极洲威德尔海磁异常构造    
Abstract: The Weddell Sea is the largest marginal sea in the Antarctic. Gravity and magnetic data,historical documents and the research products of tectonic evolution of the Weddell Sea have been comprehensively collected in order to describe the characteristics of magnetic and gravity fields and the opening history. In the north and central Weddell Sea, the gravity field is characterized by a dominant “herringbone” pattern of evenly spaced NW-SE trending fracture zones. A series of curving, concave up, predominantly east-west trending magnetic anomaly are lying on the Weddell Sea gravity herringbone. The continental shelf edge of the Weddell Sea is well marked by the prominent gravity anomaly high till the southern edge of the Weddell Sea. However, the magnetic anomaly is different in western edge and the southern edge of the Weddell Sea. The initial north-south rifting and opening of the proto-Weddell Sea has already occurred (150 Ma), then the transition to east-west spreading has occurred (140 Ma), African and South American system is well established in about 120 Ma. The spine of the Weddell herringbone of formed during that time.
Key words: Gravity anomalies    Weddell Sea    Magnetic anomalies    Tectonics    Antarctica
收稿日期: 2015-08-10 出版日期: 2015-11-20
:  P318.4+1  
基金资助: 南北极环境综合考察与评估专项南北极环境综合考察与评估专项“南极周边海域海洋地球物理考察; 南极周边海域地质构造环境综合分析与评价”(编号:CHINARE2012-2016:01-03,04-01)资助
作者简介: 胡毅(1976-),男,湖南湘乡人,高级工程师,主要从事海洋地质地球物理研究. E-mail: huyi@tio.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何慧优
房旭东
钟贵才
许江
王立明
胡毅

引用本文:

胡毅, 王立明, 钟贵才, 房旭东, 许江, 何慧优. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11): 1231-1238.

Hu Yi, Wang Liming, Zhong Guicai, Fang Xudong, Xu Jiang, He Huiyou. Gravity and Magnetic Characteristics of the Weddell Sea and Its Tectonic Significance. Advances in Earth Science, 2015, 30(11): 1231-1238.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.11.1231        http://www.adearth.ac.cn/CN/Y2015/V30/I11/1231

[1] Dalzie I W D, Grunow A. Late Gondwanide tectonic rotations within Gondwanaland[J]. Tectonics,1992, 11: 603-606.
[2] Kelly D C, Nielsen T M J, Schellenberg S A. Carbonate saturation dynamics during the Paleocene-Eocene thermal maximum: Bathyal constraints from ODP Sites 689 and 690 in the Weddell Sea (South Atlantic)[J].Marine Geology,2012, 303(1):75-86.
[3] Ross N, Bingham R G, Corr H F J, et al. Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica[J]. Nature Geoscience, 2012, 5(6):393-396.
[4] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al. Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1): 15-22.[吴国雄,林海,邹晓蕾,等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014,29(1):15-22.]
[5] Hillenbrand C D, Michael J B, Travis D S, et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100:111-136.
[6] Schwabe J, Scheinert M. Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data[J]. Journal of Geodesy, 2014, 88:821-838.
[7] Huang Peng, Chen Liqi, Cai Minggang. Progress in anthropogenic carbon estimation, spatial and temporal distribution in the ocean[J]. Advances in Earth Science, 2015,30(8): 952-959.[黄鹏,陈立奇,蔡明刚.全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展,2015,30(8): 952-959.]
[8] Jokat W, Tobias B, Matthias K, et al. Timing and geometry of early Gondwana breakup[J]. Journal of Geophysical Research, 2003,108(B9):2 428.
[9] Lawver L A, Gahagan L M, Coffin M F. The development of paleoseaways around Antarctica[M]//Kennett J P, Warnke D A, eds. The Antarctic Paleoenvironment: A Perspective on Global Change Part 1. Antarctic Research Series. AGU, Washington DC, USA, 1992, 56:7-30.
[10] Livermore R A, Hunter R J. Mesozoic seafloor spreading in the southern Weddell Sea[M]//Storey B C, King E C, Livermore R A, eds. Weddell Sea Tectonics and Gondwana Breakup. Geological Society of London Special Publications, 1996, 108:227-242.
[11] Reeves C, De Wit M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones[J]. Terra Nova, 2000,12: 272-280.
[12] Matthias K, Jokat W. The Mesozoic breakup of the Weddell Sea[J].Journal of Geophysical Research,2006,111:B12102,doi:10.1029/2005JB004035.
[13] Tom A J, Ferraccioli F, Ross N. Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data[J].Tectonophysics,2013,585: 137-160.
[14] Gales A, LeatP T, LarterR D, et al. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica[J]. Marine Geology, 2014, 348:73-87.
[15] Huang X X, Gohl K, Jokat W. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea Basin related to pre-glacial and glacial conditions[J]. Global and Planetary Change, 2014, 118:25-41.
[16] Timmermann R, Danilov S, Schröter J, et al. Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model[J]. Ocean Model, 2009, 27(3/4):114-129.
[17] Michels K H, Rogenhagen J, Kuhn G. Recognition of contour-current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica[J]. Marine Geophysical Research, 2001,22(5):465-485.
[18] Lindeque A,Martos Y M,Gohl K, et al. Deep-sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect[J].Marine Geology,2013,336: 61-83.
[19] Sandwell D T, Garcia E, Soofi K, et al. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1[J]. The Lead Edge, 2013, 32(8):892-899.
[20] Chen Zhihua, Huang Yuanhui, Tang Zheng, et al. Rare Earth elements in the offshore surface sediments of the northeastern Antarctic Peninsula and their implications for provenance[J].Marine Geology Quaternary Geology, 2015,35(3):145-155.[陈志华,黄元辉,唐正,等.南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015,35(3):145-155.]
[21] Smith W H F. Introduction to this special issue on bathymetry from space[J]. Oceanography, 2004,17(1): 6-7.
[22] Louis G, Lequentrec M F, Royer J Y, et al.Ocean gravity models from future satellite missions[J]. Eos, Transactions American Geophysical Union, 2010,91(3):21-28.
[23] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6 205):65-67.
[24] Smith W H F, Sandwell D T. Global seafloor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277:1 957-1 962.
[25] Sandwell D T, Smith W H F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate[J]. Journal of Geophysical Research, 2009, 114: B01411.
[26] Garcia E, Sandwell D T, Smith W H F. Retracking CryoSat-2, Envisat, and Jason-1 Radar Altimetry Waveforms for Improved Gravity Field Recovery[J]. Geophysical Journal International, 2014,196(3): 1 402-1 422.
[27] Maus S, Barckhausen U, Berkenbosch H, et al.EMAG2:A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne,and marine magnetic measurements[J].Geochemistry, Geophysics, Geosystems, 2009,10(8), doi:10.1029/2009GC002471.
[28] Haxby W F. Organization of oblique sea floor spreading intodiscrete, uniformly spaced ridge segments: Evidence from Geosataltimeter data in the Weddell Sea (abstract)[J]. EOS, Transactions, American Geophysical Union, 1988,69:1 155.
[29] LaBrecque J L, Barker P F. The age of the Weddell Basin[J].Nature, 1981, 290:489-492.
[30] LaBrecque J L, Ghidella M E. Bathymetry, depth to magnetic basement, and sediment thickness estimates from aerogeophysical data over the Western Weddell Basin[J]. Journal of Geophysical Research, 1997,102(B4):7 929-7 946.
[31] Ghidella M E, LaBrecque J L. The Jurassic conjugate margins of the Weddell Sea: Considerations based on magnetic, gravity and paleobathymetry data[M]//Ricci C A, ed. The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publication, Siena, Italia, 1997:441-451.
[32] Hu Yi, Wang Liming, Fang Xudong, et al. Gravity and magnetic characteristics of the Powell Basin and its tectonic significance[J].Marine Geology Quaternary Geology, 2015, 35(3):167-174.[胡毅,王立明,房旭东,等.鲍威尔海盆的重磁场特征及其构造意义[J]. 海洋地质与第四纪地质, 2015,35(3):167-174.]
[33] Parra J C, Gonza’lez’Ferra’n O, et al. Aeromagnetic survey over the South Shetland Islands, Bransfield Strait and part of the Antarctic Peninsula[J].Revista Geológica de Chile, 1984, 23:3-20.
[34] Garrett A W, Storey B C. Lithospheric extension on the Antarctic Peninsula during Cenozoic subduction[C]//Coward M P, Davey J F, Hancock P L, eds. Continental Extensional Tectonics. Geological Society London Special Publications, Blackwell, 1987, 28:419-431.
[35] Ghidella M E, Yanez G, Labrecque J L. Revised tectonic implications for the magnetic anomalies of the western Weddell Sea[J]. Tectonophysics, 2002, 347(1):65-86.
[36] Maslanyj M P, Garrett S W, Johnson A C, et al. Aeromagnetic Anomaly Map of West Antarctica (Weddell Sea sector)[M]. UK,Cambridge: British Antarctic Survey Natural Environment Research Council, 1991.
[37] LaBrecque J L, Cande S, Bell R, et al. Aerogeophysical survey yields new data in the Weddell Sea[J]. Antarctic Journal Review, 1986,21:69-71.
[38] Livermore R A, Woollett R W. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous[J]. Earth and Planetary Science Letters, 1993, 117:475-495.
[39] Marks K M, McAdoo D C, Smith W H F. Mapping the Southwest Indian Ridge with Geosat[J]. EOS, Transactions, American Geophysical Union, 1993 ,74: 81-86.
[40] Jokat W, Hubscher C, Meyer U, et al. The continental margin off East Antarctica between 10°W and 30°W[C]//Storey B C, King E C, Livermore R A, eds. Weddell Sea Tectonics and Gondwana Break-up. The Geological Society of London Special Publication, 1996, 108:129-141.
[41] Hunter R J, Johnson A C, Aleshkova N D, et al. Aeromagnetic data from the southern Weddell Sea embayment and adjacent areas: Synthesis and interpretation[J]. Geological Society of London, 1996, 1:143-154.
[42] Ferris J K, Vaughan A P M, Storey B C. Relics of a complex triple junction in the Weddell Sea embayment, Antarctica[J]. Earth and Planetary Science Letters, 2000,178:215-230.
[43] Kovacs L C, Morris P, Brozena J T A. Seafloor spreading in the Weddell Sea from magnetic and gravity data[J]. Tectonophysics, 2002,347:43-64.
[44] Granstein F M, Agterberg F P, Ogg J P, et al. A Mesozoic time scale[J]. Journal of Geophysical Research, 1994, 99(B12):24 051-24 074.
[45] Tikku A A, Marks K M, Kovacs L C. An early Cretaceous extinct spreading center in the northern Natal Valley[J].Tectonophysics, 2002, 327:195-212.
[46] Storey B C, Vaughan A P M, Millar I L. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on the Weddell Sea history[M]//Storey B C, King E C,Livermore R A, eds. Weddell Sea Tectonics and Gondwana Breakup. Geological Society of London Special Publications, 1996.
[47] Martin A K, Hartnady C J H. Plate tectonic development of the South West Indian Ocean: A revised reconstruction of East Antarctica and Africa[J].Journal of Geophysical Research, 1986, 91(B5):4 767-4 786.
[1] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[2] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[3] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[4] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[5] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[6] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[7] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[8] 刘仲兰, 李江海, 姜佳奇, 于涵. 四川峨眉山地质遗迹及其地学意义[J]. 地球科学进展, 2015, 30(6): 691-699.
[9] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[10] 陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.
[11] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[12] 熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.
[13] 郑洪波, 郭正堂, 邓涛. 新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾翠[J]. 地球科学进展, 2014, 29(11): 1280-1286.
[14] 王春连,刘成林,王立成,张林兵. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976-987.
[15] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.