地球科学进展 ›› 2015, Vol. 30 ›› Issue (11): 1231 -1238. doi: 10.11867/j.issn.1001-8166.2015.11.1231

研究论文 上一篇    下一篇

威德尔海的重磁场特征及其构造意义
胡毅 1, 王立明 1, 钟贵才 1, 房旭东 1, 许江 1, 何慧优 2   
  1. 1. 国家海洋局第三海洋研究所,福建 厦门361005;
    2. 迈勤能源技术服务有限公司,北京 100004
  • 收稿日期:2015-08-10 修回日期:2015-10-12 出版日期:2015-11-20
  • 基金资助:
    南北极环境综合考察与评估专项南北极环境综合考察与评估专项“南极周边海域海洋地球物理考察; 南极周边海域地质构造环境综合分析与评价”(编号:CHINARE2012-2016:01-03,04-01)资助

Gravity and Magnetic Characteristics of the Weddell Sea and Its Tectonic Significance

Hu Yi 1, Wang Liming 1, Zhong Guicai 1, Fang Xudong 1, Xu Jiang 1, He Huiyou 2   

  1. 1.Third Institute of 0ceanography, State Oceanic Administration, Coast and Ocean Environmental Geology Open Laboratory, Xiamen 361005, China;
    2.Maiqin Nengyuan Jishu Fuwu Limited Liability Company, Beijing 100004, China
  • Received:2015-08-10 Revised:2015-10-12 Online:2015-11-20 Published:2015-11-20
  • About author:First author: Hu Yi(1976-),male, Xiangxiang City, Hu’nan Province, Senior Engineer. Research area include marine geology and geophysics. E-mail: huyi@tio.org.cn
  • Supported by:
    Project supported by the Chinese Polar Environment Comprehensive Investigation & Assessment Programmmes Chinese Polar Environment Comprehensive Investigation & Assessment Programmmes “Marine geophysical survey in the Antarctic; Comprehensive analysis and evaluation of geological tectonic environment in the Antarctic”(No.CHINARE2012-2016:01-03,04-01)
威德尔海是南极洲最大的边缘海。通过搜集威德尔海的重磁资料、历史文献以及总结前人的相关研究成果,介绍了威德尔海的重磁场基本特征以及指示的构造意义。威德尔海最显著的重力特征是在威德尔海的中北部分布着以鲱骨式结构展布的一系列NW-SE向重力异常,其上可见一系列弧形、上凹的以E-W为主要方向的磁力异常。沿南极半岛陆架边缘的重力高一直可延伸到南侧海域,高值区与陆架平行,但是在磁异常上反映不明显。威德尔海原始海盆的形成约在150 Ma,并伴随南北向张裂,随后在140 Ma发生东西向扩张,到约120 Ma异常形成现代南极洲、非洲和南美洲板块的分布格局,鲱骨式结构异常脊也形成于该时期。
The Weddell Sea is the largest marginal sea in the Antarctic. Gravity and magnetic data,historical documents and the research products of tectonic evolution of the Weddell Sea have been comprehensively collected in order to describe the characteristics of magnetic and gravity fields and the opening history. In the north and central Weddell Sea, the gravity field is characterized by a dominant “herringbone” pattern of evenly spaced NW-SE trending fracture zones. A series of curving, concave up, predominantly east-west trending magnetic anomaly are lying on the Weddell Sea gravity herringbone. The continental shelf edge of the Weddell Sea is well marked by the prominent gravity anomaly high till the southern edge of the Weddell Sea. However, the magnetic anomaly is different in western edge and the southern edge of the Weddell Sea. The initial north-south rifting and opening of the proto-Weddell Sea has already occurred (150 Ma), then the transition to east-west spreading has occurred (140 Ma), African and South American system is well established in about 120 Ma. The spine of the Weddell herringbone of formed during that time.

中图分类号: 

[1] Dalzie I W D, Grunow A. Late Gondwanide tectonic rotations within Gondwanaland[J]. Tectonics,1992, 11: 603-606.
[2] Kelly D C, Nielsen T M J, Schellenberg S A. Carbonate saturation dynamics during the Paleocene-Eocene thermal maximum: Bathyal constraints from ODP Sites 689 and 690 in the Weddell Sea (South Atlantic)[J].Marine Geology,2012, 303(1):75-86.
[3] Ross N, Bingham R G, Corr H F J, et al. Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica[J]. Nature Geoscience, 2012, 5(6):393-396.
[4] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al. Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1): 15-22.[吴国雄,林海,邹晓蕾,等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014,29(1):15-22.]
[5] Hillenbrand C D, Michael J B, Travis D S, et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100:111-136.
[6] Schwabe J, Scheinert M. Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data[J]. Journal of Geodesy, 2014, 88:821-838.
[7] Huang Peng, Chen Liqi, Cai Minggang. Progress in anthropogenic carbon estimation, spatial and temporal distribution in the ocean[J]. Advances in Earth Science, 2015,30(8): 952-959.[黄鹏,陈立奇,蔡明刚.全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展,2015,30(8): 952-959.]
[8] Jokat W, Tobias B, Matthias K, et al. Timing and geometry of early Gondwana breakup[J]. Journal of Geophysical Research, 2003,108(B9):2 428.
[9] Lawver L A, Gahagan L M, Coffin M F. The development of paleoseaways around Antarctica[M]//Kennett J P, Warnke D A, eds. The Antarctic Paleoenvironment: A Perspective on Global Change Part 1. Antarctic Research Series. AGU, Washington DC, USA, 1992, 56:7-30.
[10] Livermore R A, Hunter R J. Mesozoic seafloor spreading in the southern Weddell Sea[M]//Storey B C, King E C, Livermore R A, eds. Weddell Sea Tectonics and Gondwana Breakup. Geological Society of London Special Publications, 1996, 108:227-242.
[11] Reeves C, De Wit M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones[J]. Terra Nova, 2000,12: 272-280.
[12] Matthias K, Jokat W. The Mesozoic breakup of the Weddell Sea[J].Journal of Geophysical Research,2006,111:B12102,doi: 10.1029/2005JB004035.
[13] Tom A J, Ferraccioli F, Ross N. Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data[J].Tectonophysics,2013,585: 137-160.
[14] Gales A, LeatP T, LarterR D, et al. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica[J]. Marine Geology, 2014, 348:73-87.
[15] Huang X X, Gohl K, Jokat W. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea Basin related to pre-glacial and glacial conditions[J]. Global and Planetary Change, 2014, 118:25-41.
[16] Timmermann R, Danilov S, Schröter J, et al. Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model[J]. Ocean Model, 2009, 27(3/4):114-129.
[17] Michels K H, Rogenhagen J, Kuhn G. Recognition of contour-current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica[J]. Marine Geophysical Research, 2001,22(5):465-485.
[18] Lindeque A,Martos Y M,Gohl K, et al. Deep-sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect[J].Marine Geology,2013,336: 61-83.
[19] Sandwell D T, Garcia E, Soofi K, et al. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1[J]. The Lead Edge, 2013, 32(8):892-899.
[20] Chen Zhihua, Huang Yuanhui, Tang Zheng, et al. Rare Earth elements in the offshore surface sediments of the northeastern Antarctic Peninsula and their implications for provenance[J].Marine Geology Quaternary Geology, 2015,35(3):145-155.[陈志华,黄元辉,唐正,等.南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015,35(3):145-155.]
[21] Smith W H F. Introduction to this special issue on bathymetry from space[J]. Oceanography, 2004,17(1): 6-7.
[22] Louis G, Lequentrec M F, Royer J Y, et al.Ocean gravity models from future satellite missions[J]. Eos, Transactions American Geophysical Union, 2010,91(3):21-28.
[23] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6 205):65-67.
[24] Smith W H F, Sandwell D T. Global seafloor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277:1 957-1 962.
[25] Sandwell D T, Smith W H F. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate[J]. Journal of Geophysical Research, 2009, 114: B01411.
[26] Garcia E, Sandwell D T, Smith W H F. Retracking CryoSat-2, Envisat, and Jason-1 Radar Altimetry Waveforms for Improved Gravity Field Recovery[J]. Geophysical Journal International, 2014,196(3): 1 402-1 422.
[27] Maus S, Barckhausen U, Berkenbosch H, et al.EMAG2:A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne,and marine magnetic measurements[J].Geochemistry, Geophysics, Geosystems, 2009,10(8), doi: 10.1029/2009GC002471.
[28] Haxby W F. Organization of oblique sea floor spreading intodiscrete, uniformly spaced ridge segments: Evidence from Geosataltimeter data in the Weddell Sea (abstract)[J]. EOS, Transactions, American Geophysical Union, 1988,69:1 155.
[29] LaBrecque J L, Barker P F. The age of the Weddell Basin[J].Nature, 1981, 290:489-492.
[30] LaBrecque J L, Ghidella M E. Bathymetry, depth to magnetic basement, and sediment thickness estimates from aerogeophysical data over the Western Weddell Basin[J]. Journal of Geophysical Research, 1997,102(B4):7 929-7 946.
[31] Ghidella M E, LaBrecque J L. The Jurassic conjugate margins of the Weddell Sea: Considerations based on magnetic, gravity and paleobathymetry data[M]//Ricci C A, ed. The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publication, Siena, Italia, 1997:441-451.
[32] Hu Yi, Wang Liming, Fang Xudong, et al. Gravity and magnetic characteristics of the Powell Basin and its tectonic significance[J].Marine Geology Quaternary Geology, 2015, 35(3):167-174.[胡毅,王立明,房旭东,等.鲍威尔海盆的重磁场特征及其构造意义[J]. 海洋地质与第四纪地质, 2015,35(3):167-174.]
[33] Parra J C, Gonza’lez’Ferra’n O, et al. Aeromagnetic survey over the South Shetland Islands, Bransfield Strait and part of the Antarctic Peninsula[J].Revista Geológica de Chile, 1984, 23:3-20.
[34] Garrett A W, Storey B C. Lithospheric extension on the Antarctic Peninsula during Cenozoic subduction[C]//Coward M P, Davey J F, Hancock P L, eds. Continental Extensional Tectonics. Geological Society London Special Publications, Blackwell, 1987, 28:419-431.
[35] Ghidella M E, Yanez G, Labrecque J L. Revised tectonic implications for the magnetic anomalies of the western Weddell Sea[J]. Tectonophysics, 2002, 347(1):65-86.
[36] Maslanyj M P, Garrett S W, Johnson A C, et al. Aeromagnetic Anomaly Map of West Antarctica (Weddell Sea sector)[M]. UK,Cambridge: British Antarctic Survey Natural Environment Research Council, 1991.
[37] LaBrecque J L, Cande S, Bell R, et al. Aerogeophysical survey yields new data in the Weddell Sea[J]. Antarctic Journal Review, 1986,21:69-71.
[38] Livermore R A, Woollett R W. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous[J]. Earth and Planetary Science Letters, 1993, 117:475-495.
[39] Marks K M, McAdoo D C, Smith W H F. Mapping the Southwest Indian Ridge with Geosat[J]. EOS, Transactions, American Geophysical Union, 1993 ,74: 81-86.
[40] Jokat W, Hubscher C, Meyer U, et al. The continental margin off East Antarctica between 10°W and 30°W[C]//Storey B C, King E C, Livermore R A, eds. Weddell Sea Tectonics and Gondwana Break-up. The Geological Society of London Special Publication, 1996, 108:129-141.
[41] Hunter R J, Johnson A C, Aleshkova N D, et al. Aeromagnetic data from the southern Weddell Sea embayment and adjacent areas: Synthesis and interpretation[J]. Geological Society of London, 1996, 1:143-154.
[42] Ferris J K, Vaughan A P M, Storey B C. Relics of a complex triple junction in the Weddell Sea embayment, Antarctica[J]. Earth and Planetary Science Letters, 2000,178:215-230.
[43] Kovacs L C, Morris P, Brozena J T A. Seafloor spreading in the Weddell Sea from magnetic and gravity data[J]. Tectonophysics, 2002,347:43-64.
[44] Granstein F M, Agterberg F P, Ogg J P, et al. A Mesozoic time scale[J]. Journal of Geophysical Research, 1994, 99(B12):24 051-24 074.
[45] Tikku A A, Marks K M, Kovacs L C. An early Cretaceous extinct spreading center in the northern Natal Valley[J].Tectonophysics, 2002, 327:195-212.
[46] Storey B C, Vaughan A P M, Millar I L. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on the Weddell Sea history[M]//Storey B C, King E C,Livermore R A, eds. Weddell Sea Tectonics and Gondwana Breakup. Geological Society of London Special Publications, 1996.
[47] Martin A K, Hartnady C J H. Plate tectonic development of the South West Indian Ocean: A revised reconstruction of East Antarctica and Africa[J].Journal of Geophysical Research, 1986, 91(B5):4 767-4 786.
[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[3] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[4] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[5] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[6] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[7] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[8] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[9] 张春灌,李想,袁炳强,宋立军. 地球磁异常( EMAG2)数据中海域资料质量评估[J]. 地球科学进展, 2019, 34(3): 288-294.
[10] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[11] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[12] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO 2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[15] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
阅读次数
全文


摘要