地球科学进展 ›› 2015, Vol. 30 ›› Issue (11): 1198 -1209. doi: 10.11867/j.issn.1001-8166.2015.11.1198

综述与评述 上一篇    下一篇

植物挥发性有机物的气候与环境效应研究进展
张学珍 1, 于志博 1, 2, 郑景云 1, 郝志新 1   
  1. 1. 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟院重点实验室, 北京100101;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-09-10 修回日期:2015-10-18 出版日期:2015-11-20
  • 基金资助:
    国家自然科学基金项目“过去300年中国森林覆盖变化对气候变化的影响模拟研究”(编号: 41471171); 中国科学院青年创新促进会人才培养基金(编号:2015038)资助

Research Progress on the Climatic and Environmental Effects of Biogenic Volatile Organic Compounds (BVOCs)

Zhang Xuezhen 1, Yu Zhibo 1, 2, Zheng Jingyun 1, Hao Zhixin 1   

  1. 1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-09-10 Revised:2015-10-18 Online:2015-11-20 Published:2015-11-20
  • About author:First author:Zhang Xuezhen (1981-), male, Jining City, Shandong Province, Associated Professor. Research area include land-atmosphere in-teraction. E-mail:xzzhang@igsnrr.ac.cn
  • Supported by:
    Project supported by National Natural Science Foundation of China“Simulation-based study on the effects of forest cover changes onclimate changes in China over the past 300 years”(No.41471171); Youth Innovation Promotion Association CAS(No.2015038)
植物挥发性有机物(Biogenic Volatile Organic Compounds,BVOCs)是大气中挥发性有机化合物(VOCs)的主要组分,具有重要的气候与环境效应。在梳理和总结既有研究成果的基础上,立足于BVOCs的大气化学过程,阐述了BVOCs不同组分的化学反应过程及其在大气臭氧(O 3)和二次有机气溶胶(SOA)污染形成中的作用,指出了BVOCs在O 3和SOA污染形成中的重要性,以及BVOCs影响地球气候的2种主要途径:①通过形成SOA以气溶胶的形式影响地球大气辐射平衡;②参与地球碳循环,影响CH 4和CO等温室气体的寿命。进而,分别总结了BVOCs通过上述2个途径对地球气候影响的研究成果;阐述了BVOCs观测技术的现状与排放量估算模型的发展历程,分析了模型的优缺点与模型间的传承关系及其与气候系统模式耦合的现状。同时展望了BVOCs气候与环境效应亟需深入研究的问题,包括BVOCs氧化机制、产物的理化性质、耦合BVOCs排放及大气化学过程的地球系统模式研制等。
As an important component of Volatile Organic Compounds (VOCs) in atmosphere, the Biogenetic Volatile Organic Compounds (BVOCs) has crucial effects on climate and environment. This paper collected and reviewed existing studies. Firstly, on the basis of reviewing gas-phase of chemistry processes of BVOCs from the existing studies, we described mechanisms in which BVOCs lead to the O 3 pollution and Secondary Organic Aerosol (SOA) pollution. The importance of BVOCs on the formations of O 3 and SOA pollutions were thereby highlighted. Secondly, through reviewing on the existing studies, we summarized two pathways in which BVOCs regulate the earth climate. One pathway is modifying radiation budgets of low level of atmosphere through transforming into SOA. The other pathway is taking part in the carbon cycle of earth to modify the lifetime of greenhouse gases, such as CH 4 and CO. The latest researches on the climatic effects of BVOCs exhibiting on the two pathways were also summarized. Thirdly, along with the temporal ways, the development history of emission model of BVOCs was reviewed and the present measurement technology of BVOCs was summarized. The advantages and disadvantages of models and successions of models were reviewed.The present status on the coupling climate model and BVOCs emission model was also depicted. Finally, on the basis of general picture of existing studies, we proposed two research directions which should be enhanced to improve our understanding on the climatic and environmental effects of BVOCs. One direction is studying the oxidation mechanism of BVOCs in the atmosphere and physical and chemical properties of the oxidation products. The other direction is developing new earth system model with coupling the emission and chemistry process of BVOCs.

中图分类号: 

[1] Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1995, 100(D5): 8 873-8 892.
[2] Simpson D, Winiwarter W, Börjesson G, et al. Inventorying emissions from nature in Europe[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1999, 104(D7): 8 113-8 152.
[3] Singh H B, Zimmerman P B. Atmospheric distribution and sources of nonmethane hydrocarbons[J]. Gaseous Pollutants: Characterization and Cycling, 1992,1: 177-235.
[4] Monson R K, Harley P C, Litvak M E, et al. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves[J]. Oecologia, 1994, 99(3/4): 260-270.
[5] Sharkey T D. Emission of low molecular mass hydrocarbons from plants[J]. Trends in Plant Science,1996, 1(3): 78-82.
[6] Silver G M, Fall R. Enzymatic synthesis of isoprene from dimethylallyldiphosphate in aspen leaf extracts[J]. Plant Physiology, 1991, 97(4): 1 588-1 591.
[7] Constable J N, Litvak M E, Greenberg J P, et al. Monoterpene emission from coniferous trees in response to elevated CO 2 concentration and climate warming[J]. Global Change Biology, 1999, 5(3): 252-267.
[8] Janson R W. Monoterpene emissions from Scots pine and Norwegian spruce[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1993, 98(D2): 2 839-2 850.
[9] Peng Shaolin, Nan Peng, Zhong Yang. Terpenoids in higher plants and their roles in ecosystems[J]. Chinese Journal of Ecology, 2002,21(2):33-38.[彭少麟,南蓬, 钟扬. 高等植物中的萜类化合物及其在生态系统中的作用[J]. 生态学杂志,2002, 21(3): 33-38.]
[10] Klinger L F, Greenburg J, Guenther A, et al. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1998, 103(D1): 1 443-1 454.
[11] Peñuelas J, Staudt M. BVOCs and global change[J]. Trends in Plant Science, 2010, 15(3): 133-144.
[12] Laothawornkitkul J, Taylor J E, Paul N D, et al. Biogenic volatile organic compounds in the Earth system[J]. New Phytologist,2009, 183(1): 27-51.
[13] Arneth A, Harrison S P, Zaehle S, et al. Terrestrial biogeochemical feedbacks in the climate system[J]. Nature Geoscience, 2010, 3(8): 525-532.
[14] Shi Mingjie, Yan Xiaodong, Jia Gensuo. Advances in the study of researching Biogenic Volatile Organic Compounds emissions[J]. Advances in Earth Science, 2008,23(8):866-873.[石明洁, 延晓冬, 贾根锁. 生物挥发性有机物研究进展[J]. 地球科学进展,2008,23(8):866-873.]
[15] Peñuelas J, Llusià J. Plant VOC emissions: Making use of the unavoidable[J]. Trends in Ecology and Evolution, 2004, 19(8): 402-404.
[16] Peñuelas J, Llusià J. BVOCs: Plant defense against climate warming?[J]. Trends in Plant Science, 2003, 8(3): 105-109.
[17] Kesselmeier J, Staudt M. Biogenic Volatile Organic Compounds (VOC): An overview on emission, physiology and ecology[J]. Journal of Atmospheric Chemistry, 1999, 33(1): 23-88.
[18] Karlik J F, Pittenger D R. Urban Trees and Ozone Formation: A Consideration for Large-Scale Plantings[J/OL].Agriculture and Natural Resources Publication, 2012.[2015-12-03]. http://anrcatalog.ucdavis.edu/pdf/8484.pdf.
[19] Wang Zhanshan, Li Yunting, Chen Tian, et al. Temporal and spatial distribution characteristics of ozone in Beijing[J]. Environmental Science, 2014, 12:4 446-4 453.[王占山,李云婷,陈添,等. 北京市臭氧的时空分布特征[J]. 环境科学,2014, 12:4 446-4 453.]
[20] Wang Yongfeng, Li Qingjun. BVOCs emitted from plants of terrestrial ecosystems and their ecological functions[J].Acta Phytoecologica Sinica, 2005, 29(3): 487-496.[王永峰, 李庆军. 陆地生态系统植物挥发性有机化合物的排放及其生态学功能研究进展[J]. 植物生态学报,2005, 29(3): 487-496.]
[21] The Royal Society. Ground-level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications[R].London: Franziska Hinz, 2008.
[22] Jia Long, Ge Maofa, Xu Yongfu, et al. Advances in atmospheric ozone chemistry[J].Progress in Chemisity, 2006, 11:1 565-1 574.[贾龙,葛茂发,徐永福, 等. 大气臭氧化学研究进展[J]. 化学进展, 2006, 11:1 565-1 574.]
[23] Derwent R G. EPAQS recommendations—Can they be implemented[C]//Proceedings of the 63rd National Society for Clean Air Environmental Protection Conference and Exhibition. Brighton: National Society for Clean Air, 1996.
[24] Finlayson-Pitts B J, Pitts Jr J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications[M]. New York: Academic Press, 1999.
[25] Jacob D J, Wofsy S C. Photochemistry of biogenic emissions over the Amazon forest[J].Journal of Geophysical Research, 1988,93(D2):1 477.doi: 10.1029/jd093id02p01477.
[26] Zhang L, Bai Y, Wang X, et al. Isoprene emission of bamboo and its implication to ozone level in region[J]. Acta Ecologica Sinica, 2001, 22(8): 1 339-1 344.
[27] McKeen S A, Hsie E Y, Liu S C. A study of the dependence of rural ozone on ozone precursors in the eastern United States[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1991, 96(D8): 15 377-15 394.
[28] Shao Min, Fu Linlin, Liu Ying, et al. Major reactive species of ambient Volatile Organic Compounds (VOCs) and their sources in Beijing[J]. Science in China (Series D),2005, 48(S2): 147-154.[邵敏,付琳琳, 刘莹,等. 北京市大气挥发性有机物的关键活性组分及其来源[J]. 中国科学:D辑,2005,(S1):123-130.]
[29] Wu Fangkun, Wang Yuesi, An Junlin, et al. Study on concentration, ozone production potential and sources of VOCs in the atmosphere of Beijing during Olympics period[J].Environmental Science,2010,(1):10-16.
. 环境科学, 2010, (1):10-16.]
[30] Peng L X, Tang X Y, Bai Y H, et al. Effect of biogenic hydrocarbon to photochemical pollution in Guangzhou[J].China Environmental Science, 2000, 20(2):132-135.
[31] Chameides W L, Lindsay R W, Richardson J, et al. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study[J].Science, 1988, 241(4 872): 1 473-1 475.
[32] Cui Xiaoyong, Zhao Guangdong, Liu Shirong. Phytogenic isoprene and its ecological significance[J]. Chinese Journal of Applied Ecology, 2002, 13(4): 505-509.[崔骁勇,赵广东, 刘世荣. 植物源异戊二烯及其生态意义[J]. 应用生态学报,2002, 13(4):505-509.]
[33] Chang J, Ren Y, Shi Y, et al. An inventory of biogenic volatile organic compounds for a subtropical urban-rural complex[J]. Atmospheric Environment, 2012, 56: 115-123.
[34] Fehsenfeld F, Calvert J, Fall R, et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry[J]. Global Biogeochemical Cycles, 1992, 6(4): 389-430.
[35] Lelieveld J, Butler T M, Crowley J N, et al. Atmospheric oxidation capacity sustained by a tropical forest[J]. Nature, 2008, 452(7 188): 737-740.
[36] Wayne R P. Chemistry of Atmospheres (3rd)[M]. New York: Oxford University Press, 2000.
[37] Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review[J]. Atmospheric Environment, 2003, 37: 197-219.
[38] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues[J].Atmospheric Chemistry and Physics, 2009, 9(14): 5 155-5 236.
[39] Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in the atmosphere[J].Science, 2009, 326(5 959):1 525-1 529.
[40] Liao H, Henze D K, Seinfeld J H, et al. Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations[J].Journal of Geophysical Research: Atmospheres(1984-2012), 2007, 112:D06201,doi: 10.1029/2006JD007813.
[41] Pandis S N, Paulson S E, Seinfeld J H, et al. Aerosol formation in the photooxidation of isoprene and β-pinene[J]. Atmospheric Environment, Part A. General Topics, 1991, 25(5): 997-1 008.
[42] Ruppert L, Becker K H. A product study of the OH radical-initiated oxidation of isoprene: Formation of C 5-unsaturated diols[J]. Atmospheric Environment,2000, 34(10): 1 529-1 542.
[43] Claeys M, Graham B, Vas G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303(5 661): 1 173-1 176.
[44] Wang W, Kourtchev I, Graham B, et al. Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(10): 1 343-1 351.
[45] Claeys M, Wang W, Ion A C, et al. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide[J].Atmospheric Environment, 2004, 38(25): 4 093-4 098.
[46] Wang Wu, Wang Shengliang, Li Li, et al. Advance in biogenic secondary organic aerosols[J].Geochemica, 2008, 37(1): 77-86.[汪午,王省良, 李黎, 等. 天然源二次有机气溶胶的研究进展[J]. 地球化学,2008, 37(1):77-86.]
[47] Tolocka M P, Heaton K J, Dreyfus M A, et al. Chemistry of particle inception and growth during α-pineneozonolysis[J]. Environmental Science & Technology, 2006, 40(6): 1 843-1 848.
[48] Li Yingying, Li Xiang, Chen Jianmin. Study on transformation mechanism of SOA from biogenic VOC under UV-B condition[J]. Environmental Science, 2011, 32(12): 3 588-3 592.[李莹莹, 李想, 陈建民. 植物释放挥发性有机物 (BVOC) 向二次有机气溶胶 (SOA) 转化机制研究[J]. 环境科学, 2011, 32(12): 3 588-3 592.]
[49] Tsigaridis K, Kanakidou M. Secondary organic aerosol importance in the future atmosphere[J]. Atmospheric Environment, 2007, 41(22): 4 682-4 692.
[50] Poisson N, Kanakidou M, Crutzen P J. Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results[J]. Journal of Atmospheric Chemistry, 2000, 36(2): 157-230.
[51] Neff J C, Holland E A, Dentener F J, et al. The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle?[J].Biogeochemistry, 2002, 57(1): 99-136.
[52] Hayden B P. Ecosystem feedbacks on climate at the landscape scale[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 1998, 353(1 365): 5-18.
[53] Carslaw K S, Boucher O, Spracklen D V, et al. A review of natural aerosol interactions and feedbacks within the Earth system[J].Atmospheric Chemistry and Physics, 2010, 10(4): 1 701-1 737.
[54] Unger N. Human land-use-driven reduction of forest volatiles cools global climate[J].Nature Climate Change, 2014, 4(10): 907-910.
[55] O’Donnell D, Tsigaridis K, Feichter J. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM[J].Atmospheric Chemistry and Physics, 2011, 11(16): 8 635-8 659.
[56] Tunved P, Hansson H C, Kerminen V M, et al. High natural aerosol loading over boreal forests[J].Science, 2006, 312(5 771): 261-263.
[57] D'Andrea S D, Navarro J C A, Farina S C, et al. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation[J]. Atmospheric Chemistry and Physics, 2015, 15(5): 2 247.
[58] Shi Guangyu, Wang Biao, Zhang Hua, et al. The radiative and climatic effects of atmospheric aerosols[J].Chinese Journal of Atmospheric Sciences, 2008,32(4):826-840.[石广玉,王标,张华,等.大气气溶胶的辐射与气候效应[J].大气科学, 2008,32(4):826-840.]
[59] Hatakeyama S, Izumi K, Fukuyama T, et al. Reactions of OH with α-pinene and β-pinene in air: Estimate of global CO production from the atmospheric oxidation of terpenes[J].Journal of Geophysical Research: Atmospheres(1984-2012), 1991, 96(D1): 947-958.
[60] Bergamaschi P, Hein R, Heimann M, et al. Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios[J].Journal of Geophysical Research: Atmospheres(1984-2012), 2000, 105(D2): 1 909-1 927.
[61] Griffin R J, Chen J, Carmody K, et al. Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States[J].Journal of Geophysical Research: Atmospheres(1984-2012), 2007, 112(D10),doi: 10.1029/2006JD007602.
[62] Logan J A, Prather M J, Wofsy S C, et al. Tropospheric chemistry: A global perspective[J]. Journal of Geophysical Research, 1981, 86(C8):7 210-7 254.
[63] Lerdau M, Guenther A, Monson R. Plant production and emission of volatile organic compounds[J].Bioscience, ñ1997,47(6): 373-383.
[64] Lerdau M, Slobodkin L. Trace gas emissions and species-dependent ecosystem services[J]. Trends in Ecology & Evolution, 2002, 17(7): 309-312.
[65] Cai Zhiquan, Qin Xiuying. Advances in the studies on plant production and emission of Volatile Organic Compounds[J].Ecology Science, 2002, 21(1): 86-90.[蔡志全,秦秀英.植物释放挥发性有机物(VOCs) 的研究进展[J].生态科学, 2002, 21(1): 86-90.]
[66] Peñuelas J, Filella I, Comas P E. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region[J]. Global Change Biology, 2002, 8(6): 531-544.
[67] Sindelarova K, Granier C, Bouarar I, et al. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years[J].Atmospheric Chemistry and Physics, 2014, 14(17): 9 317-9 341.
[68] Makkonen R, Asmi A, Kerminen V M, et al. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5. 5-HAM2[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10 077-10 096.
[69] Went F W. Organic matter in the atmosphere, and its possible relation to petroleum formation[J].Proceedings of the National Academy of Sciences of the United States of America, 1960, 46(2): 212.
[70] Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)[J]. Atmospheric Chemistry and Physics Discussions, 2006, 6(1): 107-173.
[71] Deng Xiaojun. Metabolic Engineering on Biogenic Volaitle Organic Compounds Released from Plants(Ⅱ) : Analysis and Manipulation on Volatile Terpenoid Flux of Arabidopsis[D]. Shanghai: Shanghai Institutes for Biological Sciences,Chinese Acedmey of Sciences, 2005.[邓晓军. 植物气味生物工程研究(Ⅱ):植物挥发性萜类代谢分析及其调控[D].上海:中国科学院上海生命科学研究院,2005.]
[72] Helmig D, Klinger L F, Guenther A, et al. Biogenic Volatile Organic Compound emissions (BVOCs) I. Identifications from three continental sites in the US[J]. Chemosphere, 1999, 38(9): 2 163-2 187.
[73] Li Q, Klinger L F. The correlation between the volatile organic compound emissions and the vegetation succession of the ecosystems in different climatic zones of China[J].Acta Botanica Sinica, 2000, 43(10): 1 065-1 071.
[74] Smith D, Španêl P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection[J].Trends in Analytical Chemistry, 2011, 30(7): 945-959.
[75] Holst T, Arneth A, Hayward S, et al. BVOC ecosystem flux measurements at a high latitude wetland site[J]. Atmospheric Chemistry and Physics,2010, 10: 1 617-1 634.
[76] Tzitzikalaki E, Kalivitis N, Kouvarakis G, et al. Observations of ambient monoterpenes at a costal site in the East Mediterranean[C]//EGU General Assembly Conference Abstracts. 2015, 17: 13 326.
[77] Zannoni N, Gros V, Lanza M, et al. OH reactivity and concentrations of Biogenic Volatile Organic Compounds in a Mediterranean forest of downy oak trees[J].Atmospheric Chemistry and Physics Discussions, 2015, 15(16): 22 047-22 095.
[78] Wiedinmyer C, Guenther A, Harley P, et al. Global organic emissions from vegetation[M]//Emissions of Atmospheric Trace Compounds. Netherlands: Springer Netherlands, 2004: 115-170.
[79] Wang Zhihui, Zhang Shuyu, Lu Sihua, et al. Screenings of 23 plant species in Beijing for Volatile Organic Compounds emissions[J].Environmental Science, 2003,24(2):7-12.[王志辉,张树宇,陆思华,等. 北京地区植物VOCs排放速率的测定[J]. 环境科学,2003,24(2):7-12.]
[80] Fuentes J D, Gu L, Lerdau M, et al. Biogenic hydrocarbons in the atmospheric boundary layer: A review[J]. Bulletin of the American Meteorological Society, 2000, 81(7): 1 537-1 575.
[81] Fuentes J D, Wang D, Neumann H H, et al. Ambient biogenic hydrocarbons and isoprene emissions from a mixed deciduous forest[J]. Journal of Atmospheric Chemistry, 1996, 25(1): 67-95.
[82] Geron C, Harley P, Guenther A. Isoprene emission capacity for US tree species[J]. Atmospheric Environment, 2001, 35: 3 341-3 352.
[83] Guo Xia, Tian Senlin, Ning Ping, et al. Research on the determination of BVOCs using electronic nose[J].Journal of Analytical Science, 2012,(4):497-501.[郭霞,田森林,宁平,等. 电子鼻测定植物挥发性有机物方法研究[J]. 分析科学学报,2012,(4):497-501.]
[84] Klinger L F, Greenburg J, Guenther A, et al. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1998, 103(D1): 1 443-1 454.
[85] Aslam M. Emission and role of biogenic volatile organic compounds in biosphere[J]. A Scientifie Journal of COMSATS-Science Vision, 2013, 19(1/2):1-81.
[86] Bachtiar L R, Unsworth C P, Newcomb R D. Artificial neural network prediction of specific VOCs and blended VOCs for various concentrations from the olfactory receptor firing rates of Drosophila melanogaster[C]//Engineering in Medicine and Biology Society (EMBC), 2014 36 th Annual International Conference of the IEEE. IEEE, 2014: 3 232-3 235.
[87] Szulejko J E, Kim K H. Derivatization techniques for determination of carbonyls in air[J].Trends in Analytical Chemistry, 2015, 64: 29-41.
[88] Guenther A, Baugh W, Davis K, et al. Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques[J]. Journal of Geophysical Research, 1996, 101: 18 555-18 567.
[89] Karlik J F, McKay A H, Welch J M, et al. A survey of California plant species with a portable VOC analyzer for biogenic emission inventory development[J].Atmospheric Environment, 2002, 36(33): 5 221-5 233.
[90] Li Qingjun, Klinger Lee F. The correlation between the volatile organic compound emissions and the vegetation succession of the ecosystems in different climatic zones of China[J]. Acta Botanica Sinica, 2001,43(10):1 065-1 071.
[91] Yu Guirui, Sun Xiaomin, et al. The Principle and Method of Flux Observation in Terrestrial Ecosystem[M].Beijing: Higher Education Press, 2006.[于贵瑞,孙晓敏,等. 陆地生态系统通量观测的原理与方法[M]. 北京:高等教育出版社, 2006.]
[92] Karl T, Kaser L, Turnipseed A. Eddy covariance measurements of isoprene and 232-MBO based on NO + time-of-flight mass spectrometry[J].International Journal of Mass Spectrometry, 2014, 365: 15-19.
[93] Park J H, Fares S, Weber R, et al. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods[J]. Atmospheric Chemistry and Physics, 2014, 14(1): 231-244.
[94] Guenther A B, Hills A J. Eddy covariance measurement of isoprene fluxes[J].Journal of Geophysical Research: Atmospheres (1984-2012), 1998, 103(D11): 13 145-13 152.
[95] Businger J A, Oncley S P. Flux measurement with conditional sampling[J].Journal of Atmospheric and Oceanic Technology, 1990, 7(2): 349-352.
[96] Steinbrecher R, Rappenglück B, Steigner D, et al. Fluxes of primary and secondary Biogenic Volatile Organic Compounds (BVOCs) during the BEWA field experiments[C]//AGU Fall Meeting Abstracts. 2003, 1:6.
[97] Greenberg J P, Guenther A, Zimmerman P, et al. Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer[J]. Atmospheric Environment, 1999, 33(6): 855-867.
[98] Fuentes J D, Gu L, Lerdau M, et al. Biogenic hydrocarbons in the atmospheric boundary layer: A review[J]. Bulletin of the American Meteorological Society, 2000, 81(7): 1 537-1 575.
[99] Mochizuki T, Tani A, Takahashi Y, et al. Long-term measurement of terpenoid flux above a Larixkaempferi forest using a relaxed eddy accumulation method[J].Atmospheric Environment, 2014, 83: 53-61.
[100] Bai J, Guenther A, Turnipseed A, et al. Seasonal variations in whole-ecosystem BVOC emissions from a subtropical bamboo plantation in China[J]. Atmospheric Environment, 2015,124(Part A):12-21.
[101] Chen Hongping, Jia Gensuo, Feng Jinming, et al. Remote sensing estimates of key land surface vegetation variables used in climate model: A review[J]. Advances in Earth Science, 2014, 29(1): 56-67.[陈洪萍,贾根锁,冯锦明,等. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.]
[102] Wu Bingfang, Xing Qiang. Remote sensing roles on driving science and major applications[J]. Advances in Earth Science, 2015,30(7): 751-762.[吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.]
[103] Chance K P I, Palmer R J D, Spurr R V, et al. Satellite observations of formaldehyde over North America from GOME[J]. Journal of Geophysical Research, 2000,27:3 461-3 464.
[104] Pierce T E, Waldruff P S. PC-BEIS: A personal computer version of the biogenic emissions inventory system[J]. Journal of the Air & Waste Management Association, 1991, 41(7): 937-941.
[105] Guenther A B, Monson R K, Fall R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development[J].Journal of Geophysical Research, 1991, 96(10): 799-810.
[106] Guenther A B, Zimmerman P R, Harley P C, et al. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 1993, 98(D7): 12 609-12 617.
[107] Pierce T, Geron C, Bender L, et al. Influence of increased isoprene emissions on regional ozone modeling[J].Journal of Geophysical Research: Atmospheres(1984-2012), 1998, 103(D19): 25 611-25 629.
[108] Guenther A, Baugh B, Brasseur G, et al. Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain[J]. Journal of Geophysical Research, 1999, 104(D23): 30 625-30 639.
[109] Heald C L, Wilkinson M J, Monson R K, et al. Response of isoprene emission to ambient CO 2 changes and implications for global budgets[J].Global Change Biology, 2009, 15(5): 1 127-1 140.
[110] Hua Wenjian, Chen Haishan, Li Xing. Review of land use and land cover change in China and associated climatic effects[J]. Advances in Earth Science,2014,29(9): 1 025-1 036.[华文剑,陈海山,李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展,2014,29(9): 1 025-1 036.]
[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[3] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
阅读次数
全文


摘要