Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (6): 577-588    DOI: 10.11867/j.issn.1001-8166.2017.06.0577
综述与评述     
煤层回采工作面底板破坏探查技术的发展现状
张平松, 孙斌杨*
安徽理工大学 地球与环境学院,安徽 淮南 232001
Development Status of the Detection Technology for Coal-seam Stope Floor Damage
Zhang Pingsong, Sun Binyang*
School of Earth and Environment, Anhui University of Science and Technology, Huainan Anhui 232001, China
 全文: PDF(8115 KB)   HTML
摘要: 浅部煤炭资源枯竭使得深部开采已进入实施阶段,而深部煤层所处地质环境较为复杂,开采过程中多受到底板灰岩承压水的威胁,解决突水问题的关键是有效查明底板岩层的破坏机理。国内外相关学者对此进行大量研究,其中地球物理手段在底板岩层破坏探查中取得良好效果。在采场底板岩层破坏测试研究现状分析的基础上,详细论述了电法、电磁法、地震法以及新技术布里渊散射光时域反射测量技术(BOTDR)的方法原理及其在底板变形破坏探查方面的应用现状,分析了不同探查方法技术的特点,揭示其在应用中存在的影响因素及不足,提出采场底板全空间、多参数、实时监测的思路,开发底板岩层井上下一体化动态监测预警系统,对采煤面底板岩层变形与破坏过程岩水条件探查技术的发展方向进行了展望。
关键词: 岩水耦合探查技术底板破坏地球物理    
Abstract: The exhaustion of coal resources in the shallow part has made deep mining enter into the implementation stage, however the geological environment of deep coal seam is relatively complex; the mining process is threatened by confined water in the basal limestone while the key point of solving water inrush is to check the fracture mechanism of floor strata. A large number of scholars both at home and abroad have explored this issue and the geophysical method has achieved a good effect in probing floor strata. Based on research status analysis of stope floor strata fracture, this paper stated the technological principles of electrical method, electromagnetic method, seismic wave method and new technology-Brillouin Optic Time-Domain Reflectometer (BOTDR) and their application status in probing basal deformation and fracture, and analyzed technical features of different probing methods. It revealed the influencing factors and deficiencies in their application, proposed the idea of total space, multiple parameters, real-time monitoring of stope floor, developed integrated dynamic monitoring alarming system of basal stratum and looked into the development direction of rock water detection technology during the process of coal mining floor strata deformation and fracture.
Key words: Floor strata failure    Geophysics    Exploration technology.    Rock-water coupling
收稿日期: 2017-02-07 出版日期: 2017-06-10
ZTFLH:  P631  
基金资助: 安徽省教育厅自然科学研究重大项目“煤层构造异常地震波场响应特征及三维透射成像研究”(编号:KJ2016SD17); 安徽省学术和技术带头人科研活动经费资助项目(编号:2016D079)资助
通讯作者: 孙斌杨(1992-),男,安徽淮南人,硕士研究生,主要从事工程与环境地球物理勘探研究.E-mail:binyangsun1993@163.com   
作者简介: 张平松(1971-),男,安徽六安人,教授,主要从事应用地球物理勘探的教学和科研工作.E-mail:pszhang@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张平松
孙斌杨

引用本文:

张平松, 孙斌杨. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 2017, 32(6): 577-588.

Zhang Pingsong, Sun Binyang. Development Status of the Detection Technology for Coal-seam Stope Floor Damage. Advances in Earth Science, 2017, 32(6): 577-588.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.06.0577        http://www.adearth.ac.cn/CN/Y2017/V32/I6/577

[1] Xie Heping, Qian Minggao, Peng Suping, et al . Sustainable capacity of coal mining and its strategic plan[J]. Engineering Sciences ,2011, 13(6): 44-50.
.中国工程科学, 2011, 13(6): 44-50.]
[2] He Manchao, Zhu Guolong. Research on development strategy of mining engineering in the Thirteenth Five-year Plan[J]. Coal Engineering , 2016, 48(1): 1-6.
.煤炭工程, 2016, 48(1): 1-6.]
[3] He Manchao, Xie Heping, Peng Suping, et al . Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering , 2005, 24(16): 2 803-2 813.
. 岩石力学与工程学报, 2005, 24(16): 2 803-2 813.]
[4] Jiang Bo, Li Ming, Qu Zhenghui, et al . Current research status and prospect of tectonically deformed coal[J]. Advances in Earth Science , 2016, 31(4): 335-346.
. 地球科学进展, 2016, 31(4): 335-346.]
[5] Yuan Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society , 2016, 41(1): 1-6.
. 煤炭学报, 2016, 41(1): 1-6.]
[6] Shi Longqing. Summary of research on mechanism of water-inrush from seam floor[J]. Journal of Shandong University of Science and Technology ( Natural Science ), 2009, 29(3): 17-22.
. 山东科技大学学报:自然科学版, 2009, 29(3): 17-22.]
[7] Jing Zigang, Li Baiying. Preliminary study about water-inrush from floor[J]. Coalfield Geology and Exploration , 1980,(2): 27-29.
. 煤田地质与勘探, 1980,(2): 27-29.]
[8] Shi Longqing, Han Jin. Theory and practice of dividing coal mining area floor into four-zone[J]. Journal of China University of Mining & Technology , 2005, 34(1): 16-23.
.中国矿业大学学报, 2005, 34(1): 16-23.]
[9] Wang Zuoyu, Zhang Jianhua, Liu Hongquan, et al . Strata movement law of repeat mining close coal layer[J]. Coal Science and Technology , 1995, 23(2): 9-12.
. 煤炭科学技术, 1995, 23(2): 9-12.]
[10] Zhang Jincai, Liu Tianquan. Research on the depth and distribution of coal mining floor[J]. Journal of China Coal Society , 1990, 15(2): 35-38.
. 煤炭学报, 1990, 15(2): 35-38.]
[11] Qian Minggao, Miao Xiexing, Xu Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society , 1996, 21(3): 44-47.
. 煤炭学报, 1996, 21(3): 44-47.]
[12] Zhang Wenquan, Zhang Hongri, Xu Fangjun, et al . Continuous exploration for the mining failure form of the incline and thin coal seam’s floor under the high depth[J]. Coal Geology and Exploration , 2000, 28(2): 39-42.
. 煤田地质与勘探, 2000, 28(2): 39-42.]
[13] Zhang Hongri, Zhang Wenquan, Wen Xinglin, et al . The design of continuous observation work on mining failure feature in the floor of mine and its practice[J]. Mining Research and Development , 2000, 20(4): 1-4.
. 矿业研究与开发, 2000, 20(4):1-4.]
[14] Yu Jingcun, Liu Zhixin, Yue Jianhua, et al . Development and prospect of geophysical technology in deep mining[J]. Progress in Geophysics , 2007, 22(2): 586-592.
. 地球物理学进展, 2007, 22(2): 586-592.]
[15] Han Depin, Zhao Pu, Li Dan. Application status and development prospects of mine geophysical exploration technology[J]. Progress in Geophysics , 2009, 24(5): 1 839-1 849.
. 地球物理学进展, 2009, 24(5): 1 839-1 849.]
[16] Yuan Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society , 2017, 42(1): 1-7.
. 煤炭学报, 2017, 42(1): 1-7.]
[17] Liu Shucai. Mechanism of Water Inrush from Coal Seam Floor and Continuous Survey of Fractured Zones in Coal Seam Floor[D]. Xuzhou: China University of Mining and Technology, 2008.
.徐州:中国矿业大学,2008.]
[18] Gao Zhaoning, Meng Xiangrui, Zheng Zhiwei. Research on evolution rules of coal seam floor crack under mining stress effect[J]. Chinese Journal of Underground Space and Engineering ,2016,12(1): 90-95.
. 地下空间与工程学报, 2016,12(1): 90-95.]
[19] Li Xinggao, Gao Yanfa. Damage analysis of floor strata[J]. Chinese Journal of Underground Space and Engineering , 2003, 22(1): 35-39.
. 地下空间与工程学报, 2003,22(1): 35-39.]
[20] Liu Shucai, Liu Xinming, Jiang Zhihai, et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam[J]. Chinese Journal of Rock Mechanics and Engineering , 2009, 28(2): 349-356.
. 岩石力学与工程学报, 2009, 28(2): 349-356.]
[21] Gao Zhaoning, Meng Xiangrui, Zhao Guangming. DC electrical resistivity CT survey of deformation and damage law of coal floor[J]. Journal of Chongqing University ,2011, 34(8): 90-96.
. 重庆大学学报, 2011, 34(8): 90-96.]
[22] Zhang Peng, Wang Yi, Liu Shengdong, et al . Resistivity characteristic of deformation and failure of floor in workface[J]. Coal Geology & Exploration , 2011, 39(1): 64-67.
. 煤田地质与勘探, 2011, 39(1): 64-67.]
[23] Zhang Xin, Wang Li, Du Xuebin. A review of studies on the telluric currents[J]. Advances in Earth Science , 2016, 31(7): 708-717.
. 地球科学进展, 2016, 31(7): 708-717.]
[24] Cheng Jiulong, Yu Shijian, Song Yang, et al . Detection of the failure depth of coal seam floor by acoustic wave computer tomography[J]. Journal of China Coal Society , 1999, 24(6): 576-580.
. 煤炭学报, 1999, 24(6): 576-580.]
[25] Yue Jianhua, Liu Shucai. Mine Direct Current Prospecting[M]. Xuzhou: China University of Mining and Technology Press, 2000.
. 徐州: 中国矿业大学出版社, 2000.]
[26] Yang Zhenwei, Yan Jiayong, Liu Yan, et al . Research progresses of the high-density resistivity method[J]. Geology and Exploration , 2012, 48(5): 969-978.
. 地质与勘探, 2012, 48(5): 969-978.]
[27] Dong Haobin, Wang Chuanlei.Development and application of high-resistivity electrical technique[J]. Earth Science Frontiers , 2003,10(1): 171-176.
. 地学前缘, 2003, 10(1): 171-176.]
[28] Wang Shumin, Meng Xiaohong, Li Ruchuan. The tentative application of the frequency domain high density electric method to the detection of the underground palace under Qinshihuang’s tomb[J]. Geophysical and Geochemical Exploration ,2004,28(4): 327-332.
. 物探与化探, 2004, 28(4): 327-332.]
[29] Zhang Buwen. Prospecting coal face structure by mine high-density electrical method[J]. Coal Technology , 2008, 27(10): 112-114.
. 煤炭技术, 2008, 27(10): 112-114.]
[30] Qi Min, Zhang Baolin, Liang Guanghe, et al . High-resolution prediction of space distribution characteristics of complicated underground cavities—Preliminary application of high-density electrical technique in an area of Yangquan, Shanxi[J]. Progress in Geophysics , 2006, 21(1) :256-262.
. 地球物理学进展, 2006, 21(1): 256-262.]
[31] Liu Shengdong, Wu Rongxin, Zhang Pingsong, et al . High density electric resistance method applied to monitor and measure overburden failure above seam[J]. Coal Science and Technology , 2001, 29(4): 18-21.
. 煤炭科学技术, 2001, 29(4): 18-21.]
[32] Dong Chunyong, Liu Shengdong. Application of High-Density resistivity method to monitor floor failure[C]∥The Academic Forum of China Coal Mine Geological Society Committee in 2008,2008.
∥中国煤炭学会矿井地质委员会2008年学术论坛文集,2008.]
[33] Liu Shengdong, Zhang Pingsong. The Acquisition Method of Distributed Parallel Intelligent Electrode Potential Difference Signal:zl200410014020.0[P].2006-07-26.
.2006-07-26.]
[34] Wu Rongxin, Liu Shengdong, Zhang Pingsong. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Coal Geology and Exploration , 2010, 35(3): 454-457.
. 煤炭学报, 2010, 35(3): 454-457.]
[35] Wu Rongxin, Zhang Pingsong, Liu Shengdong. Exploration of two-gateway network parallel electrical technology for exploring thin-coal area within coal face[J]. Chinese Journal of Rock Mechanics and Engineering ,2009, 28(9): 1 834-1 838.
. 岩石力学与工程学报, 2009, 28(9): 1 834-1 838.]
[36] Fu Maoru, Zhang Aihua, Zhang Pingsong, et al . Detection analysis on floor failure rule in mining of group B coal seams in Xieqiao mine[J]. Mining Safety & Environmental Protection , 2016, 43(1): 69-72.
. 矿业安全与环保, 2016, 43(1): 69-72.]
[37] Wu Tao. Study on the Failure Law of Floor From A Set Coalmining in Paner Coalmine by Parallel Electrical Method[D]. Huainan: Anhui University of Science and Technology, 2014.
.淮南: 安徽理工大学, 2014.]
[38] Niu Zhilian. The Principle of Time Domain Electromagnetic Method[M]. Changsha: Central South University Press,2007.
. 长沙: 中南大学出版社, 2007.]
[39] Hu Xiongwu, Zhang Pingsong, Yan Jiaping, et al . Spread stack interpretation means of apparent resistivity in roadway advanced detection with transient electromagnetic method[J]. Journal of China Coal Society , 2014, 39(5): 925-931.
. 煤炭学报, 2014, 39(5): 925-931.]
[40] Wang Xiliang, Peng Suping, Zheng Shishu. Controlling and predicting water inrush with high pressure in deep mining[J]. Journal of Liaoning Technical University , 2004, 23(6): 758-760.
. 辽宁工程技术大学学报, 2004, 23(6): 758-760.]
[41] Yang Feng, Peng Suping. A new method of Ground Penetrating Rader (GPR) exploration to near hidden trouble under mining[J]. Journal of China Coal Society , 2006, 31(Suppl.1): 1-4.
. 煤炭学报,2006,31(增刊1): 1-4.]
[42] Li Fusheng, Zhang Chunlei, Zhang Yong. Numerical simulation research on damage depth of floor based on GPR detrction[J]. China Coal , 2013, 39(11): 51-54.
. 中国煤炭, 2013, 39(11): 51-54.]
[43] Liu Shnegdong, Li Chenghua. Algorithm and comparison of seismic time computerized tomography technique[J]. Journal of China University of Mining & Technology , 2000, 29(2): 211-214.
. 中国矿业大学学报, 2000, 29(2): 211-214.]
[44] Li Jian, Yu Shijian, Pan Shan. Mining failure feature of the coal floor based on acoustic method and FLAC 3D [J]. Journal of Shandong University of Science and Technology ( Natural Science ), 2012, 31(6): 57-61.
. 山东科技大学学报:自然科学版, 2012, 31(6): 57-61.]
[45] Liu Chuanwu, Zhang Ming, Zhao Wusheng. Destroying depth of coal seam floor’s failure by sound wave technology[J]. Coal Science and Technology , 2003,(4):4-5.
. 煤炭科学技术, 2003, (4): 4-5.]
[46] Zhang Pingqing. Detection on floor failure depth caused by mining disturbances based on ultrasonic technology[J]. Coal Science and Technology , 2015, 43(5): 118-121.
. 煤炭科学技术, 2015, 43(5): 118-121.]
[47] Xu Yanchun, Xie Xiaofeng, Dong Jianping, et al . Ultrasonic testing floor breakage depth on similar simulation[J]. Coal Mining Technology , 2016, 21(1): 7-11.
. 煤炭开采, 2016, 21(1): 7-11.]
[48] Cheng Xuefeng, Liu Shengdong, Liu Dengxian. Sound-wave CT detection for failure patterns of surrounding rock after mining[J]. Journal of China Coal Society , 2001, 26(2): 153-155.
. 煤炭学报, 2001, 26(2): 153-155.]
[49] Zhang Pingsong, Wu Jiwen, Liu Shengdong. Study on dynamic observation of coal seam floor’s failure law[J]. Chinese Journal of Rock Mechanics and Engineering , 2006, 25(Suppl.1): 3 009-3 013.
. 岩石力学与工程学报, 2006, 25(增刊1): 3 009-3 013.]
[50] Shi Hong, Cheng Yunhai, Wang Cunwen. Study on rock mass instability based on microseismic monitoring technology and its progress[J]. Metal Mine , 2008, (6): 1-5.
. 金属矿山, 2008, (6): 1-5.]
[51] Jiang Fuxing, Xun Luo. Application of microseismic monitoring technology of strata fracturing in underground coal mine[J]. Chinese Journal of Geotechnical Engineering , 2002, 24(2): 147-149.
. 岩土工程学报, 2002, 24(2): 147-149.]
[52] Sun Jian, Wang Lianguo, Tang Furong, et al . Microseismic monitoring failure characteristics of inclined coal seam floor[J]. Rock and Soil Mechanics , 2011, 32(5): 1 589-1 595.
. 岩土力学, 2011, 32(5): 1 589-1 595.]
[53] Piao Chunde, Shi Bin, Zhu Youqun, et al. Experimental study on BOTDR temperature compensation in bored pile detection[J]. Journal of Disater Prevention and Mitigation Engineering , 2009, 29(2): 162-164.
. 防灾减灾工程学报, 2009, 29(2): 162-164.]
[54] Mendez A. Morse T F. Applications of embedded optical fiber sensors in reinforced concrete buildings and structures[C]∥Proceedings. Spie1170, Fiber Optic Smart Structwe and Skills,1989.
[55] Habel W R, Hillemeier B. Result in monitoring and as assessment of damages in large steel and concrete structures by means of fiber optic sensors[C]∥Proceedings SPIE 2446, Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways,1995, doi:10.1117/12.207742.
[56] Fujihashi K, Uehara H, Okustu M, et al . Development of a road disaster monitoring system using fiber optic distributed strain sensor[J]. NTT Technical Review , 2003, 39: 420-428.
[57] Ou Jinping, Guan Xinchun. State-of-the-art of smart structural systems in civil engineering[J]. Earthquake Engineering and Engineering Vibration , 1999, 19(2): 21-28.
. 地震工程与工程振动, 1999, 19(2): 21-28.]
[58] Yuan Libo. Overview and forecast of fiber optic white-light interfreometry[J]. Acta Optica Sinica , 2011, 31(9): 1-13.
. 光学学报, 2011, 31(9): 1-13.]
[59] Shi Bin, Xu Xuejun, Wang Di, et al . Study on BOTDR-based distributed optical fiber strain measurement for tunnel health diagnosis[J]. Chinese Journal of Rock Mechanics and Engineering , 2005, 24(15): 2 622-2 628.
. 岩石力学与工程学报, 2005, 24(15): 2 622-2 628.]
[60] Shi Bin, Xu Hongzhong, Zhang Dan, et al . Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering[J]. Chinese Journal of Rock Mechanics and Engineering , 2004, 23(3): 493-499.
. 岩石力学与工程学报, 2004, 23(3): 493-499.]
[61] Zhang Dan, Zhang Pingsong, Shi Bin, et al . Monitoring and analysis of overburden deformation and failure using distributed fiber optic sensing[J]. Chinese Journal of Geotechnical Engineering , 2015, 37(5): 952-957.
. 岩土工程学报, 2015, 37(5): 952-957.]
[62] Xu S A, Zhnag P S, Zhang D, et al . Simulation study of fiber optic monitoring technology of surrounding rock deformation under deep mining conditions[J]. Journal of Civil Structural Health Monitoring , 2015, 5(3),doi:10.1007/s13349-015-0125-8.
[63] Zhang Pingsong, Sun Binyang, Xu Shiang. Simulation research on BOTDR—Based monitoring over temperature field of water inrushing from coal floor[J]. Journal of Chongqing Jiaotong University ( Natural Science ), 2016, 35(5): 28-31.
. 重庆交通大学学报:自然科学版, 2016, 35(5): 28-31.]
[64] Zhang Pingsong, Xu Shiang. Development and application of mine fiber testing technology[J]. Progress in Geophysics , 2016, 31(3): 1 381-1 389.
. 地球物理学进展, 2016, 31(3): 1 381-1 389.]
[1] 张小双, 刘洁. 岩石圈三维结构模型综合与可视化——以青藏高原东缘为例[J]. 地球科学进展, 2017, 32(9): 996-1005.
[2] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
[3] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
[4] 于晟,马晓冰,张冬丽. 2012年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2012, 27(12): 1399-1402.
[5] 于晟,马晓冰,张冬丽. 2011年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2011, 26(12): 1330-1332.
[6] 于晟,马晓冰,蔡晓刚. 2010年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2010, 25(12): 1398-1401.
[7] 于晟,马晓冰,查剑锋. 2009年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2009, 24(12): 1380-1382.
[8] 于晟,于贵华,马晓冰. 2008年度地球物理与空间物理学科项目受理与资助成果[J]. 地球科学进展, 2008, 23(12): 1317-1320.
[9] 于晟,于贵华. 2006 年度地球物理与空间物理学科项目受理与资助成果[J]. 地球科学进展, 2007, 22(2): 201-209.
[10] 于贵华,于晟. 2007年度地球物理与空间物理学科项目受理与资助成果[J]. 地球科学进展, 2007, 22(12): 1303-1307.
[11] 于贵华;于晟. 2005年度地球物理与空间物理学科项目受理与资助成果——科学家是学科发展的基础,青年科学家是学科发展的希望[J]. 地球科学进展, 2005, 20(12): 1354-1360.
[12] 于晟;于贵华;马晓冰. 2004年度地球物理与空间物理学领域基金项目评审概况及思考[J]. 地球科学进展, 2004, 19(6): 1022-1027.
[13] 于晟;于贵华;周元泽. 2003年度地球物理学基金项目分析及工作思考[J]. 地球科学进展, 2004, 19(2): 341-342.
[14] 于晟,于贵华,单新建. 2002年度地球科学部三处(地球物理与空间物理学学科)工作报告[J]. 地球科学进展, 2002, 17(6): 934-937.
[15] 于晟,陈颙,常旭,葛洪魁. 城市化进程与地球物理学研究[J]. 地球科学进展, 2002, 17(5): 729-733.