地球科学进展 ›› 2002, Vol. 17 ›› Issue (6): 881 -885. doi: 10.11867/j.issn.1001-8166.2002.06.0881

全球变化研究 上一篇    下一篇

湿地汞环境过程研究进展
王起超,刘汝海,吕宪国,李志博   
  1. 中国科学院东北地理与农业生态研究所,吉林 长春 130012
  • 收稿日期:2002-02-05 修回日期:2002-05-18 出版日期:2002-12-20
  • 通讯作者: 王起超(1944-),男 吉林德惠人,研究员,博士生导师,主要从事污染物环境过程及其控制研究.E-mail:wangqichao@netease.com E-mail:wangqichao@netease.com
  • 基金资助:

    国家自然科学基金项目“北方沼泽湿地中汞和甲基汞的环境过程”(编号:40071072);中国科学院知识创新工程重要方向项目“中国典型湿地水陆相互作用过程、资源环境效应及调控”(编号:KZCX2-302)资助.

PROGRESS OF STUDY ON THE MERCURY PROCESS IN THE WETLAND ENVIRONMENT

WANG Qi-chao, LIU Ru-hai, LU Xianguo, LI Zhi-bo   

  1. Northeast Institute of Geography and Agricutural Ecology,CAS, Changchun 130012,China
  • Received:2002-02-05 Revised:2002-05-18 Online:2002-12-20 Published:2002-12-01

汞在湿地生态系统中的环境过程是汞全球循环的组成部分,并与人类的健康有着密切关系。分析了湿地环境过程研究的重要意义,综述了国内外湿地汞环境过程研究的进展情况,包括在湿地汞来源、含量、赋存形态,迁移、转化、界面反应等方面。指出由于湿地独特的水文过程和环境条件,汞的累积、迁移与转化过程具有与其它生态系统不同的特点。湿地能吸收大气沉降和地表径流的汞,是汞的汇。汞在湿地生态系统中呈富集状态。湿地具有较高的汞累积速率和甲基汞生产能力,湿地的氧化-还原条件和丰富的有机碳有利于汞的甲基化。湿地甲基汞通过食物链的"生物放大",威胁人类的健康。全球气候变暖、酸雨和臭氧层耗竭可能增加湿地汞的生态环境风险。提出应开展湿地特定环境条件下汞的循环及其在汞全球循环中作用的研究,并关注湿地对全球环境变化的响应。

The wetland behavior of mercury (Hg) ,which is related to human health closely, is  an important part of Hg global cycle. In this paper, we expounded the significance of studying Hg behavior in wetland environment, and reviewed progress of study on wetland process of Hg over the world, including occurance, contents, speciation, frasportation, transformation, methylation and demethylation, interface exchanges of Hg. Because the wetland is unique in the aspect of hydrology course and environmental condition, the accumulation and transform characteristics of Hg is different from the other ecosystems. The wetland can absorb Hg of atmospheric deposition and runoff, so it is the sink of Hg. Hg presents the accumulation state in the wetland ecosystem. Wetland has high Hg accumulation rate and methylation capacity. In wetland, redox condition and abundant organic carbon are favorable to methylation of Hg. Wetland methylmercury threatens the human health through food chain's bioaccumulation. The global warming, acid rain and exhaustion of ozone layer may increase the risk of ecological environment of the wetland Hg. It is emphasized that we should research Hg cycle in special conditions of wetland, and should investigate the role of wetland in Hg global cycle, as well as should pay close attention to the response of Hg in wetland to global environmental changes.

中图分类号: 

[1]Linqvist O, Johnsson K, Aastrup M,et al. Mercury in the Swedish environment-recent research on causes, consequences and corrective methods[J]. Water, Air and Soil Pollution,1991,55:1-126 .
[2]Kelly C A, Rudd J W M, Bodaly R A. Increases of greenhouse gases and methymercury following of an experimental reservoir [J]. Environmental Science & Technology, 1997,31:1 334-1 344.
[3]Rood B E, Gottgens J F, Delfino J J,et al. Mercury accumulation trends in Florida Everglades and Savannas Marsh flooded soils[J]. Water, Air and Soil Pollution, 1995 ,80:981-990.
[4]Fleming L E ,Watkins S. Mercury Exposure in Humans through food consumption from the Everglades of Florida [J]. Water, Air  and Soil Pollution, 1995,80:41-48.
[5]Ayotte P, Dewailly E, Careau H. Aretic air pollution and human health: what effects should be expected?[J]. The Science of the Total Environment, 1995,160/161: 529-537.
[6]David S. 从酸雨到毒雪1998年度Volvo 环境奖获奖演说[J]. 冯化涛,暴维英译,莫润华校.AMBIO 人类环境杂志,1999,28(4):350-355.
[7]John A M ,Marcello M V, Desmond T.金矿开采活动引起汞在黑水生态系统中汞的活性[J].李胜,费章君译.李季校.AMBIO人类环境杂志,1998,27(2): 92-98.
[8]Pollman C, Gill G, Landing W, et al. Overview of the Florida atmospheric mercury study(FAMS) [J]. Water, Air and Soil Pollution, 1995, 80:285-290.
[9]Pirrone N, Glonsorn, Keeler G J. Ambient levels and dry deposition fluxes of mercury to lakes Huron, Erie and St.Clair[J]. Water, Air and Soil Pollution, 1995,80: 179-188.
[10]Iverfeldt A, Munthe J, Brosset C, et al. Long-term changes in concentration and deposition of atmospheric mercury over sandinavia[J].Water, Air and Soil Pollution ,1995,80: 227-233.
[11]Kang W-J, Trefry J H, Nelsen T A, et al. Direct atmospheric inputs versus runoff fluxes of mercury to the lower Everglades and Florida Bay[J]. Environmental Science &Technology, 2000,34:4 058-4 063.
[12]Meli. Pre-industrial atmospheric deposition of mercury: uncertain rates from lake sediment and peat cores [J]. Water, Air and Soil Pollution,1995,80:637-640.
[13]Belger L, Forsberg B R. Factors influencing total mercury levels in predatory fish from the Negro River system, Amazon basin [A]. In: 6th International Conference on Mercury as a Global Pollutant[C]. Abstract Minamata Japan BC-25, 2001.
[14]Remblay A, Cloutier L, Lucotte M. Total mercury and methylmercury fluxes via emerging insects in recently flooded hydroelectric reservoirs and a natrral lade [J]. The Science of the Total Environment, 1998,219: 209-221.
[15]Paterson M J ,Rudd J W M, Louis V S T. Increase of total and methylmercury in zooplankton following flooding of peatland reservoir [J]. Environmental Science & Technology,1998,32:3 869-3 874.
[16]Schwesig D, Matzner E. Mercury nand methylmercury in upland and wetland acid forest soils of a watershed in Me-Bavaria, Germany [J].Water, Air and Soil Pollution, 1998,105:141-154.
[17]Liu Ruhai,Wang Qichao,Lü Xianguo, et al. Mercury in the peat bog ecosystem of Xiaoxingan maintains[J]. Chinese Journal of Environmental Science, 2002,23(4):102-106.[刘汝海,王起超,吕宪国,等.小兴安岭泥炭藓沼泽生态系统中的汞[J].环境科学,2002,23(4):102-106.]
[18]Liu Ruhai, Wang Qichao, Lü Xianguo, et al. Geochemistry Characteristic of mercury in Sanjiang plain marsh [J].Journal of Environmental Sciences,2002, 22(5) :661-663[刘汝海,王起超,吕宪国.三江平原湿地汞的地球化学特征[J].环境科学学报,2002,22(5):661-663.]
[19]Wang Qichao, Wang Shuhai, Wang Renhua, et al. Study on releasing rate of mercury from sediments in Jilin-Fuyu reach of the Songhua river[J]. Scientia Geographica Sinica, 1990.10(4): 365-371.[王起超,王书海,王稔华,等.松花江吉林—扶余江段沉积汞释放速率的模拟研究[J].地理科学,1990,10(4):365-371.]
[20]Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury, anthropogenic inflouences[J]. Geochimica et Cosmochimica Acta, 1994, 58(15):3-191.
[21]Hanson P J, Lindberg S E, Tabberer T,et al. Foliar Exchange of mercury vapor. Evidence for a compensation point[J].Water, Air and Soil Pollution , 1995, 80: 373-382.
[22]Poissant L, Casimir A. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites[J]. Atmospheric Environment, 1996,32(5):883-893.
[23]Wall S D, Kock H H, Schroeder W H. Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe [J].Atmospheric Environment, 2000,34:3 745-3 755.
[24]Babiarz C L, Hurley J P, Rolfhus R R. Colloidal phase transport of newly deposited mercury through contrasting watersheds .Insight from the METAALICUS Project[A].In: 6th International Conference on Mercury as a Global Pollutant[C]. Abstract, Minamala, Japan,BC-26.2001.
[25]Mejli M, Skarp J, Bergman R. Mobility of mercury in lake sediments exposed to tedox changes[A]. In: 6th International Conference on Mercury as a Global Pollutant[C]. Abstract, Minamala Japan, BC-9.2001.
[26]Wang Shuhai, Wang Qichao, Wang Renhua,et al. A study on release of methyl mercury form freshwater sediments[J]. Journal of Environmental Sciences ,1985,5(3):287-296.[王书海,王起超,王稔华,等. 淡水河流沉积物甲基汞释放规律的研究[J]. 环境科学学报, 1985,5(3) :287-296.]
[27]Porvari P, Verta M.Methylmercury production in flooded soil. A Laboratory Study [J].Water, Air and Soil Pollution ,1995,80:765-773.
[28]Jay T A, Morel F M M, Hemond H F.Mercury in the presence of polysulfides [J]. Environmental Science & Technology, 2000,34:2 196-2 200.
[29]Rolfhus K R,Hurley J P, Hall B. The response of soil/water mercury fluxes to periodic Inundation of upland boreal researvoirs[A].In: 6th Internaional Conference on Mercury as a Global Pollutant[C].  Abstract, Minamala Japan,BC-1.2001.
[30]Balogh S J, Huang Y, Meyer M L. Derect leaf litter imputs in increared methylmercury concentration in a prairie river[A]In: 6th Internaional Conference on Mercury as a Global Pollutant[C]. Abstract, Minamala Japan, BC-28.2001.
[31]Gnimaraes J R D, Meili M, Hylander L D. Mercury net methylation in fire fropical flood plain regions of Brazil : High in root zone of floating macrophyte mats but low in surface sediments and flooded soils [J]. The Science of the Total Environment, 2000,261:99-107.
[32]Sellers P, Kelly C A, Rudd J W M. Photodegradation of methylmercury in lakes [J].Nature,1996,380:693-695.
[33]Dipasguale M M, Agee J,Migowan C. Methylmercury degradation pathways: A comparison among three mercury impacted ecosystem [J]. Environmental Science &Technology, 2000,34:4 908-4 916.
[34]Renberg I. Diatoms and Lake Acidity [M].Dordrecht: Junk Publishers, 1986. 213-219.
[35]Maskimmin B M ,Rudd J, W M ,Kelly C A. Influence of dissolved organic carbon, pH and microbial respiration rates on mercury methylation and demethylation in lake water [J].Canada  Journal Fish, Aquatic Science, 1992,49:17-22.
[36]Westling O. Mercury in runoff from drained and undrained peatland in Sweden [J]. Water Air and Soil Pollution, 1991,56:419-426.

[1] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[2] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[3] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[4] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[5] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[6] 安正韬, Wei Yongping. 澳大利亚湿地水环境管理和技术的有机结合[J]. 地球科学进展, 2016, 31(2): 213-224.
[7] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[8] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[9] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[10] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[11] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[12] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[13] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[14] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[15] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
阅读次数
全文


摘要