[1]Ekstrom M P, Dahan C A, Chen M, et al. Formation imaging with microelectrical scanning arrays[C]∥27th Annual Logging Symposium Transactions. Society of Professional Well Log Analysts, 1986. [2]Pezard P A, Lovell M, ODP Leg 126 Shipboard Scientific Party. Downhole images-electrical scanning reveals the nature of subsurface oceanic crust[J]. EOS,1990, 71: 710. [3]Hiscott R N, Colella A, Pezard P, et al. Sedimentology of deep-water volcaniclastics, Oligocene Izu-Bonin forearc basin, based on formation microscanner images[C]∥Taylor B, Fujioka K, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 126. Texas: Texas A&M University, 1992: 75-96. [4]Pezard P A, Lovell M A, Hiscott R N. Downhole electrical images in volcaniclastic sequences of the Izu-Bonin forearc basin, western Pacific[C]∥Taylor B, Fujioka K, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 126. Texas: Texas A&M University, 1992: 603-624. [5]Harker S D, McGann G J, Bourke L T, et al. Methodology of Formation MicroScanner image interpretation in Claymore an Scapa fields (North Sea)[C]∥Hurst A, Lovell M A, Morton A C, eds. Geological Applications of Wireline Logs. London: The Geological Society of London Special Publication 48, 1990: 11-25. [6]Molinie A J, Ogg J G. Formation Microscanner imagery of Lower Cretaceous and Jurassic sediments from the western Pacific (Site 801)[C]∥Larson R L, Lancelot Y, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 129. Texas: Texas A&M University, 1992: 671-691. [7]Salimullah A R M, Stow D A V. Application of FMS images in poorly recovered coring intervals-examples from ODP Leg 129[C]∥Hurst A, Griffiths C M, Worthington P F,eds. Geological Applications of Wireline Logs II. London:The Geological Society of London Special Publication 65, 1992: 71-86. [8]Pirmez C, Hiscott R N, Kronen J K Jr. Sandy turbidite successions at the base of channel-levee systems of the Amazon Fan revealed by FMS logs and cores: Unraveling the facies architecture of large submarine fans[C]∥Flood R D, Piper D J W, Klaus A, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 155. Texas: Texas A&M University, 1997: 7-34. [9]Serra O. Formation MicroScanner Image Interpretation[M]. Houston: Schlumberger Educational Service, 1989: 1-117. [10]Lovell M A, Harvey P K, Brewer T S, et al. Applications of FMS images in the Ocean Drilling Program-an overview[C]∥Cramp A, MacLeod A, Lee C J, et al. eds. Geological Exploration of Ocean Basins-Results from the Ocean Drilling Program. London:The Geological Society of London Special Publication 131, 1998: 287-303. [11]Pirmez C, Brewer T S. Borehole electrical images: Recent advances in ODP [J]. JOIDES Journal, 1998, 24 (1): 14-17. [12]Prensky S E. Advances in borehole imaging technology and applications[C]∥Lovell M A, Williamson G, Harvey P K, eds. Borehole Imaging: Applications and Case Histories. London: The Geological Society of London Special Publication 159, 1999: 1-43. [13]Major C O, Pirmez C, Goldberg D. High-resolution core-log integration techniques-examples from the Ocean Drilling Program[C]∥Harvey P K, Lovell M A, eds. Core-Log Integration. London:The Geological Society of London Special Publication 136, 1998: 285-295. [14]Tartarotti P, Crispini L, Einaudi F, et al. Data report: reoriented structures in the East Pacific Rise basaltic crust from ODP Hole 1256D, Leg 206: Integration of core measurements and electrical-acoustic images[C]∥Teagle D A H, Wilson D S, Acton G D, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 206. Texas: Texas A&M University, 2006: 1-26. [15]MacLeod C J, Parson L M, Sager W W. Identification of tectonic rotations in boreholes by the integration of core information with Formation MicroScanner and borehole televiewer images[C]∥Hurst A, Griffiths C M, Worthington P F, eds. Geological Applications of Wireline Logs II. London:The Geological Society of London Special Publication 65, 1992: 235-246. [16]MacLeod C J, Parson L M, Sager W W. Reorientation of cores using the Formation Microscanner and borehole televiewer-application to structural and paleomagnetic studies with the Ocean Drilling Program[C]∥Hawkins J W, Parson L M, Allan J F, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 135. Texas: Texas A&M University, 1994: 301-311. [17]Haggas S L, Brewer T S, Harvey P K, et al. Relocating and orientating cores by the integration of electrical and optical images: A case study from Ocean Drilling Program Hole 735B[J]. Journal of the Geological Society, London, 2001, 158: 615-623. [18]DeMenocal P. Downhole logs as palaeoclimate tools: A case study from ODP Leg 128, Sea of Japan[J]. EOS, 1994, 75(44): 309. [19]Hiscott R N, Colella A, Pezard P, et al. Basin plain turbidite succession of the Oligocene Izu-Bonin intraoceanic forearc basin [J]. Marine and Petroleum Geology, 1993, 10: 450-466. [20]Pezard P A, Hiscott R N, Lovell M A, et al. Evolution of the lzu-Bonin intraoceanic forearc basin, western Pacific, from cores and FMS images[C]∥Hurst A, Griffiths C M, Worthington P F, eds. Geological Applications of Wireline Logs II: The Geological Society of London Special Publication 65, London, 1992: 43-69. [21]Salimullah A R M, Stow D A V. Wireline log signatures of resedimented volcaniclastic facies, ODP Leg 129, west central Pacific[C]∥Hurst A, Griffiths C M, Worthington P F, eds. Geological Applications of Wireline Logs II: The Geological Society of London Special Publication 65, London, 1992: 87-97. [22]Awadallah S A M, Hiscott R N, Bidgood M, et al. Turbidite facies and bedthickness characteristics inferred from microresistivity (FMS) images of lower to upper Pliocene rift-basin deposits, Woodlark Basin, offshore Papua New Guinea[C]∥Huchon P, Taylor B, Klaus A, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 180, 2001: 1-30. [23]Cooper P, Arnaud H M, Flood P G. Formation Microscanner logging responses to lithology in guyot carbonate platforms and their implications-sites 865 and 866[C]∥Winterer E L, Sager W W, Firth J V, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 143. Texas: Texas A&M University, 1995: 329-372. [24]Ogg J, Camoin G F, Jansa L. Takuyo-Daisan Guyot: Depositional history of the carbonate platform from downhole logs at Site 879 (Outer Rim)[C]∥Haggerty J A, Premoli Silva I, Rack F, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 144. Texas: Texas A&M University, 1995: 361-380. [25]Ogg J, Camoin G F, Vanneau A A. Limalok Guyot: depositional history of the carbonate platform from downhole logs at site 871 (lagoon) [C] ∥Haggerty J A, Premoli Silva I, Rack F, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 144. Texas: Texas A&M University, 1995: 233-253. [26]Williams T, Pirmez C. FMS Images from carbonates of the Bahama Bank Slope, ODP Leg 166: Lithological identification and cyclo-stratigraphy[C]∥Lovell M A, Williamson G, Harvey P K, eds. Borehole Imaging: Applications and Case Histories. London:The Geological Society of London Special Publication 159, 1999: 227-238. [27]Demant A, Cambray H, Vandamme D. Lithostratigraphy of the volcanic sequences at Hole 917A, Leg 152, SE Greenland Margin [J]. Journal of the Geological Society, London, 1995,152(6): 943-946. [28]Bartetzko A, Paulick H, Iturrino G, et al. Facies reconstruction of a hydrothermally altered dacite extrusive sequence: Evidence from geophysical downhole logging data (ODP Leg 193)[J]. Geochemistry, Geophysics, Geosystems, 2003, 4 (10): doi:10.1029/2003GC000575. [29]Salimullah A R M, Stow D A V. Ichnofacies recognition in turbidites/hemiturbidites using enhanced FMS images—Examples from ODP Leg 129 [J]. The Log Analyst,1995, 36(4): 38-49. [30]Bernet K H, Eberli G P, Gilli A. Turbidite frequency and composition in the distal part of the Bahamas Transect[C]∥Swart P K, Eberli G P, Malone M J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 166. Texas: Texas A&M University, 2000: 45-60. [31]DeMenocal P B, Bristow J F, Stein R. Paleoclimatic applications of downhole logs: Pliocene-Pleistocene results from Hole 798b, Sea of Japan[C]∥Pisciotto K A, Ingle J C Jr, von Breymann M T, et al. Proceedings of the Ocean Drilling Program, 127/128, Part 1. Texas: Texas A&M University, 1992: 393-407. [32]Meredith J A, Tada R. Evidence for Late Miocene cyclicity and broad-scale uniformity of sedimentation in the Yamato Basin, Sea of Japan, from Formation Microscanner data[C]∥Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, Part 2. Texas: Texas A&M University, 1992: 1 037-1 046. [33]Kroon D, Williams T, Pirmez C, et al. Coupled early Pliocene-middle Miocene bio-cyclostratigraphy of Site 1006 reveals orbitally induced cyclicity patterns of Great Bahama Bank carbonate production[C]∥Proceedings of the Ocean Drilling Program, Scientific Results, 166. Texas: Texas A&M University, 2000: 155-166. [34]Williams T, Kroon D, Spezzaferri S. Middle and Upper Miocene cyclostratigraphy of downhole logs and short-to long-term astronomical cycles in carbonate production of the Great Bahama Bank[J].Marine Geology, 2002, 185: 75-93. [35]Reunning L, Reijmer J J G, Betzler C. Sedimentation cycles and their diagenesis on the slope of a Miocene carbonate ramp (Bahamas, ODP Leg 166)[J]. Marine Geology, 2002, 185: 121-142. [36]Puga-Bernabéu, Betzler C. Cyclicity in Pleistocene upper-slope cool-water carbonates: Unravelling sedimentary dynamics in deep-water sediments, Great Australian Bight, ODP Leg 182, Site 1131A [J]. Sedimentary Geology, 2008, 205: 40-52. [37]Zoback M D, Moos D, Mastin L, et al. Well bore breakouts and in situ stress [J]. Journal of Geophysical Research,1985, 90: 5 523-5 530. [38]Gough D I, Bell J S. Stress orientations from borehole wall fractures with examples from Colorado, East Texas, and northern Canada [J]. Canadian Journal of Earth Sciences, 1982, 19: 1 358-1 370. [39]Plumb R A, Hickman S H. Stress-induced borehole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well [J]. Journal of Geophysical Research, 1985, 90: 5 513-5 521. [40]Rummel F. Hydraulic fracturing stress measurements theory and practice[C]∥Bonn G ed. Spaungsmessungen und Bohrlochstabilitat, KTB-PL, NLFB, Hannover, KTB-Rep. 88-8:53-65.Schlumberger,1988. [41]Brudy M, Zoback M D, Fuchs K, et al. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes—Implications for crustal strength [J].Journal of Geophysical Research, 1997, 102: 18 453-18 475. [42]Chabernaud T J. High-resolution electrical imaging in the New Hebrides Island Arc: Structural analysis and stress studies[C]∥Greene H G, Collot J-Y, Stokking L B, et al,eds. Proceedings of the Ocean Drilling Program, Scientific Results, 134. Texas: Texas A&M University, 1994: 591-606. [43]Basile C, Ginet J M, Pezard P. Post-tectonic subsidence of the Côte d′Ivoire-Ghana marginal ridge: Insights from FMS data[C]∥Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 159. Texas: Texas A&M University, 1998: 81-91. [44]Ask M. In situ stress at the Côte d′Ivoire-Ghana marginal ridge from FMS logging in Hole 959D[C]∥Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 159. Texas: Texas A&M University, 1998: 209-223. [45]Flecker R, Kopf A, Jurado-Rodríguez M J. Structural evidence for the nature of hiatal gaps in the upper Cretaceous to Holocene succession recovered from the Eratosthenes Seamount[C]∥Robertson A H F, Emeis K-C, Richter C, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 160. Texas: Texas A&M University, 1998: 517-526. [46]Jurado-Rodriguez M J, Brudy M. Present-day stress indicators from a segment of the African-Eurasian plate boundary in the Eastern Mediterranean Sea: Results of formation microscanner data[C]∥Robertson A H F, Emeis K-C, Richeter C, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 160. Texas: Texas A&M University, 1998: 527-534. [47]De Larouzière F D, Pezard P A, Comas M C, et al. Structure and tectonic stresses in metamorphic basement, Site 976, Alboran Sea[C]∥Zahn R, Comas M C, Klaus A, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 161. Texas: Texas A&M University, 1999: 319-329. [48]Basile C. Late Jurassic sedimentation and deformation in the west Iberia continental margin: Insights from FMS data, ODP Leg 173 [J]. Marine and Petroleum Geology, 2000, 17: 709-721. [49]Houtz R, Ewing J. Upper crustal structure as a function of plateage[J]. Journal of Geophysical Research,1976, 81: 2 490-2 498. [50]Harvey P K, Brewer T S, Goldberg D, et al. Architecture of the oceanic basement: The contribution of wireline logging[C]∥Lovell M, Parkinson N,eds. Geological Applications of Well Logs. AAPG Methods in Exploration, 13, 2002: 199-211. [51]Brewer T S, Harvey P K, Haggas S, et al. Borehole images of the ocean crust: Case histories from the Ocean Drilling Program[C]∥Lovell M A, Williamson G, Harvey P K, eds. Borehole Imaging: Applications and Case Histories. London: The Geological Society of London Special Publication 159, 1999: 283-294. [52]Pezard P A, Becker K, Revil A, et al. Fractures, porosity, and stress in the dolerites of Hole 504b, Costa Rica Rift[C]∥Alt J C, Kinoshita H, Stokking L B, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 148. Texas: Texas A&M University, 1996: 317-329. [53]Ayadi M, Pezard P A, Laverne C, et al. Multi-scalar structure at DSDP/ODP Site 504, Costa Rica Rift, I: Stratigraphy of eruptive products and accretion processes[C]∥Harvey P K, Lovell M A, eds. Core-Log Integration. London:The Geological Society of London Special Publication 136, 1998: 297-310. [54]Ayadi M, Pezard P A, Bronner G, et al. Multi-scalar structure at DSDP/ODP Site 504, Costa Rica Rift, III: Faulting and fluid circulation. Constraints from integration of FMS images, geophysical logs and core data[C]∥Harvey P K, Lovell M A,eds. Core-Log Integration. London: The Geological Society of London Special Publication 136, 1998: 311-326. [55]Tartarotti P, Ayadi M, Pezard P A, et al. Multi-scalar structure at DSDP/ODP Site 504, Costa Rica Rift, II: fracturing and alteration. An integrated study from core, downhole measurements and borehole wall images[C]∥Harvey P K, Lovell M A, eds. Core-Log Integration. London: The Geological Society of London Special Publication 136, 1998: 391-412. [56]De Larouziere F D, Pezard P A, Ayadi M, et al. Downhole measurements and electrical images in Hole 896a, Costa Rica Rift[C]∥Alt J C, Kinoshita H, Stokking L B, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 148. Texas: Texas A&M University, 1996: 375-388. [57]Brewer T S, Harvey P K, Lovell M A, et al. Ocean floor volcanism: Constraints from the integration of core and downhole logging measurements[C]∥Harvey P K, Lovell M A, eds. Core-Log Integration. London: The Geological Society of London Special Publication 136, 1998: 341-362. [58]Miller D J, Iturrino G J, McGuire J C. Core-log correlations in oceanic basement from Hole 1105A on the Southwest Indian Ridge[C]∥Casey J F, Miller D J, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 179. Texas: Texas A&M University, 2003: 1-29. [59]Linek M, Jungmann M, Berlage T, et al. Rock classification based on resistivity patterns in electrical borehole wall images[J]. Journal of Geophysics and Engineering,2007, 4: 171-183. [60]Jungmann M, Kopal M, Clauser C, et al. Multi-class supervised classification of electrical borehole wall images using texture features[J].Computers & Geosciences, 2011, 17: 541-553. |