Please wait a minute...
img img
高级检索
地球科学进展  2012, Vol. 27 Issue (6): 686-693    DOI: 10.11867/j.issn.1001-8166.2012.06.0686
IODP研究     
利用有孔虫壳体B/Ca比值再造古海水pH值及[CO2-3]的潜力
乔培军,王婷婷,翦知湣
同济大学海洋地质国家重点实验室,上海200092
Potential of Foraminiferal B/Ca Ratios for Reconstructing Paleo-seawater pH and CO2-3 Concentrations
Qiao Peijun, Wang Tingting, Jian Zhimin
State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
 全文: PDF(1792 KB)  
摘要:

有孔虫壳体B/Ca比值是一个极具潜力并且受到广泛关注的古海洋学方法,适用于恢复古海水pH值及[CO2-3]。对于表层水,在一定条件下可以再造大气CO2浓度;对于深层水,可以指示洋流变化及水团变迁。且与硼同位素方法相比较,B/Ca比值分析更简易、稳定性更好,受溶解及沉积埋藏作用影响小,因而更适合于高分辨率的古海洋学分析。但是,由于该分析方法较新,与之相关的有孔虫吸收B元素的生物过程不是很清楚,采用B/Ca比值恢复pH值及[CO2-3]的机制也不是很了解,方法的建立主要基于经验公式基础之上,因而为该方法寻找理论基础是今后研究的一个重要方向。

关键词: 有孔虫壳体B/CapH值[CO2-3]    
Abstract:

 The analysis of foraminiferal B/Ca ratios is a greatly potential and widely concerned paleoceanographic method, which is applicable to the reconstruction of  the past pH and CO2-3  concentrations of sea water, and under certain situations also can also be used to reflect the changes of the atmospheric CO2 concentration from surface water, and indicate changes of ocean current and water mass of deep water. Compared with the conventional method of boron isotopes, the B/Ca ratio method is relatively easier, more stable, and less  affected less by dissolution and postdeposition alternations. As a result, it is relatively suitable for highresolution paleoceanographic studies. However, this method is comparably new. The foraminiferal biological processes to absorb boron element is still not very clear. Moreover, the mechanisms using B/Ca ratio to reconstruct pH and CO2-3  concentrations is not well accepted. As the method is constructed on the basis of empirical function, establishment of its theoretical basis will be the future and important development of this method.

Key words: Foraminifera shell    B/Ca ratio    pH value    CO2-3     concentration
收稿日期: 2012-05-10 出版日期: 2012-06-10
:  P736.22  
基金资助:

国家自然科学基金重点项目“南海晚新生代中层水和深层水的演变及其全球意义”(编号:91028004);国家自然科学基金项目“低纬西太平洋末次盛冰期以来的气候环境变化及其全球影响”(编号:41023004);国家高技术研究发展计划项目“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

通讯作者: 乔培军(1979-),男,吉林桦甸人,讲师,主要从事古海洋学、沉积地球化学研究.       E-mail: qiaopeijun@tongji.edu.cn
作者简介: 乔培军(1979-),男,吉林桦甸人,讲师,主要从事古海洋学、沉积地球化学研究. E-mail:qiaopeijun@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

乔培军,王婷婷,翦知湣. 利用有孔虫壳体B/Ca比值再造古海水pH值及[CO2-3]的潜力[J]. 地球科学进展, 2012, 27(6): 686-693.

Qiao Peijun, Wang Tingting, Jian Zhimin. Potential of Foraminiferal B/Ca Ratios for Reconstructing Paleo-seawater pH and CO2-3 Concentrations. Advances in Earth Science, 2012, 27(6): 686-693.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.06.0686        http://www.adearth.ac.cn/CN/Y2012/V27/I6/686

[1]Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407: 859-869.
[2]Sanyal A, Bijma J, Spero H, et al. Empirical relationship between pH and the boron isotope composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy[J]. Paleoceanography, 2001,16(5): 515-519.
[3]Palmer M R, Pearson P N. A 23 000-year record of surface water pH and pCO2 in the western equatorial Pacific Ocean[J]. Science, 2003, 300(5 618): 480-482.
[4]Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 305-314.
[5]Simone A K, Daniela N S, Jelle B, et al. In situ boron isotope analysis in marine carbonates and its application for foraminifera and paleo-pH[J]. Chemical Geology, 2009, 260(1/2): 138-147.
[6]Yu J, Elderfield H, Hnisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007, 22, doi:10.1029/2006PA001347.
[7]Yu J, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007,258(1/2):73-86.
[8]Foster G L. Seawater pH, pCO2 and [CO2-3] variations in the Caribbean Sea over the last 130 kyr:A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters,2008, 271: 254-266.
[9]Yu J, Foster G L, Elderfield H, et al. An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 114-120.
[10]Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system[J]. Earth and Planetary Science Letters,2011, 302(3/4): 403-413.
[11]Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochemica Acta, 1992, 56(1): 537-543.
[12]Pagani M, Lemarchand D, Spivack A J, et al. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J]. Geochimica et Cosmochemica Acta,2005, 69(4): 953-961.
[13]Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1990,37(5): 755-766.
[14]Sanyal A, Nugent M, Reeder R J, et al. Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1 551-1 555.
[15]Sanyal A, Hemming N G, Broecker W S, et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments[J]. Paleoceanography,1996,11(5): 513-517.
[16]Sanyal A, Hemming N G, Gilbert N, et al. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera[J]. Nature,1995, 373(6 511): 234-236.
[17]Wara M W, Delaney M L, Bullen T D, et al. Possible roles of pH, temperature and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera[J]. Paleoceanography, 2003, 18(4), doi:10.1029/2002PA000797.
[18]Tripati A K, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326(5 958): 1 394-1 397.
[19]Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry Geophysics Geosystems,2003,4(9):1-20, doi:10.1029/2003GC000559.
[20]Boyle E, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215 000 years: Changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters,1985/86, 76: 135-150.
[21]Al-Ammar A, Gupta R K, Barnes R M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 55(6): 629-635.
[22]Yu J, Day J, Greaves M, et al. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS[J]. Geochemistry Geophysics Geosystems,2005,6:Q08P01,doi:10.1029/2005GC000964.
[23]Nürnberg D. Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes[J].Journal of Foraminiferal Research,1995, 25(4): 350-368.
[24]Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J].Paleoceanography,2003, 18(2): 1 050, doi:10.29/2002PA000826.
[25]Pelletier G, Lewis E, Wallace D. A calculator for the CO2 system in seawater for Microsoft Excel/VBA[Z]. Washington State Deptartment of Ecology, Olympia, 2005.
[26]Zeebe R E, Wolf-Gladrow. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Elsevier Oceanography Series,Netherlands: Elsevier, 2001:29.
[27]Lemarchand D, Gaillardet J, Lewin E, et al. Boron isotope systematics in large rivers:Implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic[J]. Chemical Geology, 2002, 190(1/4): 123-140.
[28]Simon L, Lecuyer C, Marechal C, et al. Modelling the geochemical cycle of boron: Implications for the long-term evolution of seawater and oceanic crust[J]. Chemical Geology, 2006, 225(1/2): 61-76.
[29]Uppstrom L R. Boron/chlorinity ratio of deep-sea water from pacific ocean[J].Deep Sea Research Oceanographic Abstracts, 1974, 21: 161-162.
[30]Yu J, Broecker W S, Elderfield H, et al. Loss of carbon from the deep sea since the Last Glacial Maximum[J]. Science, 2010, 330(6 007): 1 084-1 087.
[31]Takahashi T, Sutherland S, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Ⅱ, 2009, 56(8/10): 554-557.
[32]Tripati A K, Roberts C D, Eagle R A, et al. A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO2 reconstructions[J]. Geochimica et  Cosmochimica Acta, 2011, 75(10): 2 582-2 610.
[33]Hönisch B, Hemming N G, Archer D, et al. Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition[J]. Science, 2009, 324(5 934): 1 551-1 554.
[34]Lea D W, Boyle E A. Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans[J].Paleoceanography, 1990, 5(5): 719-742.
[35]Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)[J].Global Geochemical Cycles, 2004, 18:GB4031,doi:10.1029/2004GB002247.
[36]Broecker W S, Clark E. Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea[J]. Geochemistry Geophysics Geosystems,2002,3(3), doi:10.1029/2001GC000231.
[37]Allen K A, Hönisch B, Eggins S M, et al. Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa[J].Earth and Planetary  Science Letters,2011, 309(3/4): 291-301.

[1] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[2] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[3] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[4] 沈巍, 许清海, 李建勇, 李曼玥, 张攀攀, 卢静瑶. 山区小流域花粉植被土地利用的关系:定量检测人类活动对环境的影响[J]. 地球科学进展, 2017, 32(9): 972-982.
[5] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[6] 张小双, 刘洁. 岩石圈三维结构模型综合与可视化——以青藏高原东缘为例[J]. 地球科学进展, 2017, 32(9): 996-1005.
[7] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[8] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[9] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[10] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[11] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川MS8.0地震破裂带土壤气中H2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[12] 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 穿透性地球化学勘查技术综述与展望[J]. 地球科学进展, 2017, 32(8): 828-838.
[13] 唐子剑, 康明, 李军. 基于勘探工程位置建模方法和储量估算[J]. 地球科学进展, 2017, 32(8): 839-849.
[14] 王的, 冯海艳, 景慧敏. 北京市冬季、春季PM10和PM2.5中元素地球化学特征[J]. 地球科学进展, 2017, 32(8): 850-858.
[15] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.