地球科学进展 ›› 2022, Vol. 37 ›› Issue (10): 1088 -1100. doi: 10.11867/j.issn.1001-8166.2022.068

研究简报 上一篇    

榆林西南部下白垩统砂岩粒度组成与成因分析
王晓宁 1( ), 岳大鹏 1( ), 赵景波 1 , 2   
  1. 1.陕西师范大学地理科学与旅游学院,陕西 西安 710119
    2.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西 西安 710061
  • 收稿日期:2022-03-16 修回日期:2022-08-16 出版日期:2022-10-10
  • 通讯作者: 岳大鹏 E-mail:wxn1996@snnu.edu.cn;yuedp@snnu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“第四纪黄土对世界古文明起源的作用研究”(42130507);黄土与第四纪地质国家重点实验室项目“陕西宜君地区S5古土壤发育时的土壤含水量与水分平衡研究”(SKLLQG2013)

Grain Size Composition and Genesis of Lower Cretaceous Sandstone in southwestern Yulin

Xiaoning WANG 1( ), Dapeng YUE 1( ), Jingbo ZHAO 1 , 2   

  1. 1.School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
    2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
  • Received:2022-03-16 Revised:2022-08-16 Online:2022-10-10 Published:2022-10-18
  • Contact: Dapeng YUE E-mail:wxn1996@snnu.edu.cn;yuedp@snnu.edu.cn
  • About author:WANG Xiaoning (1996-), female, Lankao County, Henan Province, Ph.D student. Research areas include loess and paleoclimate. E-mail: wxn1996@snnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Study on the role of Quaternary loess in the origin of world ancient civilization”(42130507);The State Key Laboratory of Loess and Quaternary Geology “Study on soil water content and water balance during the development of S5 paleosol in Yijun area, Shaanxi Province”(SKLLQG2013)

榆林西南部靖边地区集中分布的红色砂岩多呈波浪状且层理显著。探究靖边红色砂岩的沉积成因、动力变化,讨论砂岩沉积时期的古气候特征,对于深入了解西北地区红层的沉积环境具有指导意义。从4个“厚层—薄层”剖面中分层采集了120份红色砂岩样品,从粒度组成、粒度参数、端元组分与磁化率等进行分析,得出以下结论: 砂岩中的中砂组分占51.24%,其次为粗砂、细砂与粉砂,厚层砂岩粒径大于薄层; 研究区砂岩非风成沉积物,属淡水河湖相沉积,分离出来的4个端元EM1~EM4指示了总体较强的搬运动力; 砂岩沉积时期气候存在干湿交替变化,但未达到典型干旱气候。剖面中的薄层细粒与磁化率高值指示了相对湿润的气候特征,薄层砂岩沉积时期的降水量高于厚层砂岩。

Red sandstone is widely distributed in the Jingbian region in the southwestern areas of Yulin. The sandstone is predominantly wavy and contains significant sedimentary bedding. It is important to investigate the sedimentary genesis and dynamic changes associated with Jingbian red sandstone and discuss the paleoclimatic characteristics of the sedimentary period of this sandstone formation. In addition, this research has important implications for advancing our understanding of the sedimentary environment of red beds in northwestern China. For stratified sampling, four sections with thick and thin interbeddings were selected, and 120 samples of red sandstone samples were obtained. Based on grain size composition, grain size parameters, end-members, and magnetic susceptibility, the following conclusions were drawn: The proportion of medium sand in the sandstone was 51.24%, followed by coarse sand, fine sand, and silt. The grain size of the thick sandstone was larger than that of the thin sandstone. Sandstone in the study area did not constitute aeolian sediment; it belonged to freshwater river lake facies, and the four separated end-members (EM1~EM4) indicated an overall strong transporting force. During the sedimentary period of the sandstone, the climate alternated between dry and wet conditions, and there was no typical arid climate. The fine grains of the thin layers and high magnetic susceptibility in these sections were indicative of a relatively humid climate, and precipitation during the sedimentary period of the thin-layer sandstone was higher than that of thick-layer sandstone.

中图分类号: 

图1 靖边红色砂岩采样位置及剖面类型
(a)厚层与厚层互层剖面;(b)厚层与薄层互层剖面; (c)薄层与薄层互层剖面; (d)含灰白色碳酸钙层的厚层与薄层互层剖面
Fig. 1 Sampling location and section types of red sandstone in Jingbian County
(a) Thick layer and thick layer interbedding section; (b) Thick layer and thin layer interbedding section; (c) Thin layer and thin layer interbedding section; (d) Cross section of thick layer and thin layer with grayish white calcium carbonate layer
图2 各砂岩剖面粒度分布
Fig. 2 Grain size distribution of each sandstone section
图3 各砂岩剖面粒度成分三角图(单位:%
Fig. 3 Triangle figure of the grain size composition in each sandstone sectionunit%
图4 砂岩样品粒度累积分布曲线和频率曲线
(a)LZA和LZB部分样品累积分布曲线;(b)LZC和LZD部分样品累积分布曲线;(c)LZA和LZB部分样品自然频率曲线;(d)LZC和LZD部分样品自然频率曲线
Fig. 4 Grain size cumulative distribution curve and frequency curve in sandstone sample
(a) Cumulative distribution curve of some samples of LZA and LZB; (b) Cumulative distribution curve of some samples of LZC and LZD;(c) Natural frequency curve of some samples of LZA and LZB; (d) Natural frequency curve of some samples of LZC and LZD
图5 各剖面粒度参数与频率磁化率变化
(a)LZA剖面;(b)LZB剖面;(c)LZC剖面;(d)LZD剖面
Fig. 5 Change of grain size parameter and frequency susceptibility in each section
(a) LZA section; (b)LZB section; (c)LZC section; (d)LZD section
表1 各剖面厚层与薄层低频磁化率值
Table 1 Magnetic susceptibility values of thick layer and thin layer of each section
图6 砂岩样品非参数化端元分析结果
(a)非参数化端元线性相关性;(b)非参数化端元角度偏差;(c)非参数化端元频率分布曲线
Fig. 6 Nonparametric end-member analysis results of sandstone samples
(a) Nonparametric end-member linear correlation; (b) Nonparametric end-member angle deviation; (c) Nonparametric end-member frequency distribution curve
表2 各端元组分相关性
Table 2 Tuple correlation between each end-member
表3 砂岩剖面中灰白色沉积层 CaCO3 含量 (%)
Table 3 CaCO3 content of gray-white sediment layers in sandstone section
图7 靖边砂岩粒度与中国现代沙漠粒度对比 22 27 - 28
Fig. 7 Comparison of grain size between Jingbian sandstone and modern desert in China 22 27 - 28
1 MING G D, ZHOU W J, WANG H, et al. Grain size variation in two lakes from margin of Asian summer monsoon and its paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110295.
2 LU Yin, FANG Xiaomin, FRIEDRICH O, et al. Characteristic grain-size component—a useful process-related parameter for grain-size analysis of lacustrine clastics?[J]. Quaternary International, 2018, 479: 90-99.
3 KE Siyin, ZHANG Dongli, WANG Weitao, et al. Progress of environmental change in the northeastern Tibetan Plateau since Late Pleistocene[J]. Advances in Earth Science,2021,36(7):727-739.
柯思茵,张冬丽,王伟涛,等.青藏高原东北缘晚更新世以来环境变化研究进展[J].地球科学进展,2021,36(7):727-739.
4 LU Huayu, AN Zhisheng. Paleoclimate signicifance of grain size composition of Chinese Loess Plateau[J]. Science in China(Series D: Earth Sciences), 1998,21(3):278-283.
鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学D辑:地球科学,1998,21(3):278-283.
5 WU Xuechao, HAO Qingzhen, MARKOVIC S B, et al. Progress in Danube Loess and paleoenvironment study[J]. Advances in Earth Science, 2020,35(4):363-377.
武雪超, 郝青振, MARKOVIC S B, 等.多瑙河黄土与古环境研究进展[J].地球科学进展,2020,35(4):363-377.
6 PULLEY S, ROWNTREE K. Stages in the life of a magnetic grain: sediment source discrimination, particle size effects and spatial variability in the South African Karoo[J]. Geoderma, 2016, 271: 134-143.
7 ZHOU Ye, JIANG Fuqing, Qingyun NAN, et al. Grain-size distribution of detrital sediment in the Amami Sankaku basin since late Pleistocene and its provenance and palaeoclimate implications[J]. Advances in Earth Science, 2016, 31(3): 298-309.
周烨, 蒋富清, 南青云, 等. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
8 QIAO Yansong, GUO Zhengtang, HAO Qingzhen, et al. Grain-size features of a Miocene loess-soil sequence at Qin’an: implications on its origin[J]. Science in China (Series D: Earth Sciences), 2006, 36(7):646-653.
乔彦松, 郭正堂, 郝青振,等.中新世黄土—古土壤序列的粒度特征及其对成因的指示意义[J].中国科学D辑:地球科学,2006, 36(7):646-653.
9 ZHU Rui, ZHANG Changmin, GONG Fuhua, et al. Use of sediment dynamic analysis in environment interpretation: a case study on Honghuatao formation, Upper Cretaceous of western Jianghan Basin, Hubei Province[J]. Geological Journal of China Universities, 2010, 16(3): 358-364.
朱锐, 张昌民, 龚福华, 等. 粒度资料的沉积动力学在沉积环境分析中的应用: 以江汉盆地西北缘上白垩统红花套组沉积为例[J]. 高校地质学报, 2010, 16(3): 358-364.
10 LIU Rong, YUE Dapeng, ZHAO Jingbo, et al. Characterisitics of grain size end members and its environmental significance of aeolian sand/loess sedimentary sequence since L2 in Hengshan, Shaanxi Province[J]. Arid Land Geography, 2021, 44(5): 1 328-1 338.
刘蓉, 岳大鹏, 赵景波, 等. 陕西横山L2以来风沙/黄土沉积序列的粒度端元特征及其环境意义[J]. 干旱区地理, 2021, 44(5): 1 328-1 338.
11 KONG Fanbiao, CHEN Haitao, XU Shujian, et al. Dust accumulation processes and palaeoenvironmental significance of loess indicated by grain size in Zhangqiu, Shandong Province[J]. Acta Geographica Sinica, 2021, 76(5): 1 163-1 176.
孔凡彪, 陈海涛, 徐树建, 等. 山东章丘黄土粒度指示的粉尘堆积过程及古气候意义[J]. 地理学报, 2021, 76(5): 1 163-1 176.
12 BAI Min, LU Ruijie, DING Zhiyong, et al. End-member analysis of grain-size in the east of Qinghai Lake and its environmental implications[J]. Quaternary Sciences, 2020, 40(5): 1 203-1 215.
白敏, 鲁瑞洁, 丁之勇, 等. 青海湖湖东沙地粒度端元分析及其指示意义[J]. 第四纪研究, 2020, 40(5): 1 203-1 215.
13 LIANG Aimin, QU Jianjun, DONG Zhibao, et al. The characteristic of grain size end members in Kumtagh Desert and its implication for sediment source[J]. Journal of Desert Research, 2020, 40(2): 33-42.
梁爱民, 屈建军, 董治宝, 等. 库姆塔格沙漠沉积物粒度端元特征及其物源启示[J]. 中国沙漠, 2020, 40(2): 33-42.
14 PENG Hua. A survey of the Danxia landform research in China[J]. Scientia Geographica Sinica, 2000, 20(3): 203-211.
彭华. 中国丹霞地貌研究进展[J]. 地理科学, 2000, 20(3): 203-211.
15 GUO Fusheng, CHEN Liuqin, YAN Zhaobin, et al. Definition, classification, and danxianization of Danxia landscapes[J]. Acta Geologica Sinica, 2020, 94(2): 361-374.
郭福生, 陈留勤, 严兆彬, 等. 丹霞地貌定义、分类及丹霞作用研究[J]. 地质学报, 2020, 94(2): 361-374.
16 LI Xiaoze, DONG Guangrong, JIN Heling, et al. Discovery of Ordos Cretaceous dune rock [J].Chinese Science Bulletin,1999, 44(8):874-877.
李孝泽,董光荣,靳鹤龄,等.鄂尔多斯白垩系沙丘岩的发现[J].科学通报,1999, 44(8):874-877.
17 PENG Xiaohua, WU Hao, LI Yizhao, et al. A preliminary study on the genetic mechanism of wavy Danxia landform in Longzhou, Jingbian, Shaanxi Province[J]. Acta Geoscientica Sinica, 2020, 41(3): 443-451.
彭小华, 吴昊, 李益朝, 等. 陕西靖边龙洲波浪式丹霞地貌成因机理初探[J]. 地球学报, 2020, 41(3): 443-451.
18 LI Xingwen, TANG Yongzhong, XING Lida, et al. Palaeoecological and stratigraphical significance of the dinosaur footprints from the lower Cretaceous Luohe formation in northern Shaanxi Province, NW China[J]. Journal of Stratigraphy, 2021, 45(2): 160-167.
李兴文, 唐永忠, 邢立达, 等. 陕北地区下白垩统洛河组恐龙足迹的古生态学及地层学意义[J]. 地层学杂志, 2021, 45(2): 160-167.
19 PAN Zhixin, REN Fang, CHEN Liuqin, et al. Characteristics of Danxia landform in the northern Shaanxi and a comparison with other Danxia areas in and outside China[J]. Scientia Geographica Sinica, 2021, 41(6): 1 069-1 078.
潘志新, 任舫, 陈留勤, 等. 陕北丹霞地貌特征及国内外对比研究[J]. 地理科学, 2021, 41(6): 1 069-1 078.
20 LIU Baojun. Sedimentary petrology[M].Beijing:Geological Publishing House,1980:313-315.
刘宝珺.沉积岩石学[M].北京:地质出版社,1980: 313-315.
21 LIU Boyu, ZHANG Hucai, CHANG Fengqin, et al. Modern sedimentary characteristics and environmental indication significance of the Cibi lake[J]. Advances in Earth Science, 2020, 35(2): 198-208.
刘柏妤, 张虎才, 常凤琴, 等. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
22 LIU Qianqian, YANG Xiaoping. Spatial variations of grain size parameters of dune sands in the Mu Us Sandy Land and Hobq Sand Sea, northern China and its potential causes[J]. Journal of Desert Research, 2020, 40(5): 158-168.
刘倩倩, 杨小平. 毛乌素沙地和库布齐沙漠风成沙粒度参数的空间变化及其成因[J]. 中国沙漠, 2020, 40(5): 158-168.
23 PATERSON G A, HESLOP D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4 494-4 506.
24 SHU Peixian, NIU Dongfeng, LI Baosheng, et al. Grain size characteristics of modern dune sand and its significance in the Mu Us Sandy Land, China[J].Journal of Desert Research,2016,36(1):158-166.
舒培仙,牛东风,李保生,等.毛乌素沙地现代沙丘沙的粒度特征及其意义[J].中国沙漠,2016,36(1):158-166.
25 XIE Yuan, WANG Jian, JIANG Xinsheng, et al. Sedimentary characteristics of the Cretaceous desert facies in Ordos Basin and their hydrogeological significance[J]. Acta Sedimentologica Sinica,2005, 23(1):73-83.
谢渊,王剑,江新胜,等.鄂尔多斯盆地白垩系沙漠相沉积特征及其水文地质意义[J].沉积学报,2005, 23(1):73-83.
26 ZHANG Yalu, CHUN Xi, ZHOU Haijun, et al. Particle size characteristics of surface sediments and their environmental significance: a comparative study of deserts in arid western Inner Mongolia, China[J]. Environmental Earth Sciences, 2020, 79(10): 1-14.
27 HE Qing, YANG Xinghua, HUO Wen, et al. Characteristics of sand granularity from kumtag desert and its environmental significance[J]. Journal of Desert Research, 2009, 29(1): 18-22.
何清, 杨兴华, 霍文, 等. 库姆塔格沙漠粒度分布特征及环境意义[J]. 中国沙漠, 2009, 29(1): 18-22.
28 ZHAO Jingbo, ZHANG Chong, DONG Zhibao, et al. Particle size composition and formation of the mega-dune in the Badain Jaran Desert[J]. Acta Geologica Sinica, 2011, 85(8): 1 389-1 398.
赵景波, 张冲, 董治宝, 等. 巴丹吉林沙漠高大沙山粒度成分与沙山形成[J]. 地质学报, 2011, 85(8): 1 389-1 398.
29 SAHU B K. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Research, 1964, 34(1): 73-83.
30 ZHANG Hong, JIN Xianglan, LI Guihong, et al. Original features and palaeogeographic evolution during the Jurassic-Cretaceous in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(1): 1-11.
张泓, 晋香兰, 李贵红, 等. 鄂尔多斯盆地侏罗纪—白垩纪原始面貌与古地理演化[J]. 古地理学报, 2008, 10(1): 1-11.
31 ZENG Yunfu, XIA Wenjie. Sedimentary petrology[M].Beijing:Geological Publishing House,1986.
曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.
32 ZENG Cheng. Environmental records of lacustrine authigenic carbonate content[J]. Transactions of Oceanology and Limnology, 2009(1): 67-72.
曾承. 湖泊自生碳酸盐含量环境记录[J]. 海洋湖沼通报, 2009(1): 67-72.
33 YANG Xiaoping, LIU Tungsheng, XIAO Honglang. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years[J]. Quaternary International,2003,104(1):99-112.
34 WANG Zhaoduo, HUANG Chunchang, ZHOU Yali, et al. Characteristics of Holocene loess-palaeosol particle size composition and paleoclimatic significance in east Guanzhong, Shaanxi Province[J]. Advances in Earth Science, 2018, 33(3): 293-304.
王兆夺, 黄春长, 周亚利, 等. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
35 TIAN Qingchun, YANG Taibao, ZHANG Shuxin, et al. Magnetic susceptibility and its environmental significance of lake sediments in Tibet Plateau[J]. Acta Sedimentologica Sinica, 2011, 29(1): 143-150.
田庆春, 杨太保, 张述鑫, 等. 青藏高原腹地湖泊沉积物磁化率及其环境意义[J]. 沉积学报, 2011, 29(1): 143-150.
36 HOU Kai, QIAN Hui, ZHANG Yuting, et al. Influence of tectonic uplift of the Qinling Mountains on the paleoclimatic environment of surrounding areas: insights from loess-paleosol sequences, Weihe Basin, central China[J]. CATENA, 2020, 187: 104336.
37 YU Keke, WANG Le, SHENG Enguo, et al. Environmental implication of magnetic susceptibility of lacustrine sediments in Lake Chaonaqiu, Liupan Mountain[J].Chinese Journal of Ecology,2020,39(8):2 501-2 508.
郁科科,王乐,盛恩国,等.六盘山朝那湫湖泊沉积物磁化率的环境指示意义[J].生态学杂志,2020,39(8):2 501-2 508.
38 ZHANG Zonggu, WEI Mingjian. Quantitative relationship between total iron oxide in Loess and climatic indexes[J]. Chinese Science Bulletin,1995, 40(13): 1 219-1 221.
张宗祜,魏明建.黄土中全氧化铁与气候指标的定量关系[J].科学通报,1995,40(13): 1 219-1 221.
39 ZHAO Jingbo, GU Jing, DU Juan. Climate and soil moisture environment during development of the fifth paleosol in Guanzhong Plain[J]. Science in China(Series D: Earth Sciences), 2008, 51(5): 665-676.
40 XIONG Yi, LI Qingkui. Chinese soil[M]. Beijing: Science Press, 1987.
熊毅, 李庆逵. 中国土壤[M]. 北京:科学出版社,1987.
41 ZHAO Jingbo, MA Yandong, CAO Junji, et al. Holocene pedostratigraphic records from the southern Chinese Loess Plateau and their implications for the effects of climate on human civilization[J]. CATENA, 2020, 187: 104410.
42 ZHOU Qi, ZHAO Jingbo, SU Min, et al. Climate change and soil erosion in Holocene in Xi’an area[J]. Acta Pedologica Sinica, 2021, 58(6):1 404-1 415.
周旗, 赵景波, 苏敏, 等. 西安地区全新世气候变化与土壤侵蚀研究[J].土壤学报,2021,58(6): 1 404-1 415.
43 ZHU Kezhen. A preliminary study on climate change in China in recent 5000 years[J].Scientia Sinica,1973,3(2):168-189.
竺可桢.中国近五千年来气候变迁的初步研究[J].中国科学,1973,3(2):168-189.
44 ZHAO Jingbo. Illuviation theory and the environment evolution in the Loess Plateau of China[M]. Beijing: Science Press, 2003.
赵景波. 淀积理论与黄土高原环境演变[M]. 北京: 科学出版社, 2003.
45 ZHAO Jingbo. The study on the red soil of Neogene in Xi’an and Baode of Shanxi[J]. Acta Sedimentologica Sinica, 1989, 7(3): 113-120.
赵景波. 西安、山西保德第三纪晚期红土的研究[J].沉积学报, 1989, 7(3): 113-120.
46 FEDOROFF N, GOLDBERG P. Comparative micromorphology of two late Pleistocene paleosols (in the Paris Basin)[J]. CATENA, 1982, 9(1/2): 227-251.
47 GUO Zhengtang, LIU Dongsheng, FEDOROFF N, et al. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 1998, 18(3): 113-128.
48 GUO Zhengtang, FEDOROFF N. A study on the paleoclimatic implication of the saline-alkali paleosols in Xifeng and Xi’an loess sections[J]. Quaternary Sciences, 1992(2): 107-117, 193.
郭正堂, FEDOROFF N. 西峰和西安黄土中盐碱化古土壤气候意义的初步探讨[J]. 第四纪研究, 1992(2): 107-117, 193.
49 ZHAO Jingbo. The paleosol and the migration of climatic zone about 500ka BP in Loess Plateau, Shaanxi Province[J]. Acta Geographica Sinica, 2001, 56(3): 323-331.
赵景波. 陕西黄土高原500ka BP的古土壤与气候带迁移[J]. 地理学报, 2001, 56(3): 323-331.
50 ZHAO Jingbo. Middle Holocene soil and migration of climatic zones in the Guanzhong plain of China[J]. Soil Science, 2005, 170(4): 292-299.
51 ZHAO Yan, YUE Dapeng, ZHAO Jingbo, et al. Holocene environmental change and its impact on human activities in Xi’an[J]. Progress in Geography, 2022, 41(7): 1 274-1 287.
赵艳, 岳大鹏, 赵景波, 等. 西安全新世环境变化及对人类活动的影响[J]. 地理科学进展, 2022, 41(7): 1 274-1 287.
52 FANG Yanqiu, WANG Zixuan, WANG Yilin, et al. Grain size end-member components and sedimentary mechanism of Eocene lacustrine sediments in Huangyang River section of Wuwei Basin[J]. Journal of Earth Environment,2022,13(3):296-307.
方艳秋, 王子璇, 王艺霖, 等.武威黄羊河剖面始新世湖相沉积物粒度端元组分及其沉积机制[J].地球环境学报, 2022, 13(3): 296-307.
[1] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[2] 关秀宇, 郭杰, 陈海燕, 修迪, 张运强. 冀北承德盆地奥陶纪冶里组叠层石的发现及沉积环境[J]. 地球科学进展, 2018, 33(5): 545-553.
[3] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[4] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[5] 秦松, 孙传敏, 杨继友, 张伟, 尼玛次仁. 冈底斯东段色日绒地区冈瓦纳相冰海杂砾岩特征及其意义[J]. 地球科学进展, 2015, 30(11): 1239-1249.
[6] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[7] 马会珍, 王雪华. 黔东北志留纪晚期小溪组沉积环境研究[J]. 地球科学进展, 2014, 29(7): 859-864.
[8] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[9] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[10] 屈建军; 代枫年; 康国定; 王远萍; 张伟民. 鸣沙研究及其展望[J]. 地球科学进展, 1993, 8(4): 59-61.
[11] 李任伟. 分子地层学[J]. 地球科学进展, 1992, 7(2): 78-.
[12] 刘铁兵. 碳硫生物地球化学与沉积环境分析[J]. 地球科学进展, 1990, 5(3): 22-25.
阅读次数
全文


摘要