地球科学进展 ›› 2022, Vol. 37 ›› Issue (12): 1232 -1244. doi: 10.11867/j.issn.1001-8166.2022.035

研究论文 上一篇    下一篇

末次盛冰期以来库布齐沙漠有效湿度变化及其对全球变化的响应
张小梅 1 , 2( ), 靳鹤龄 1( ), 刘冰 1, 梁晓磊 3, 梁爱民 4, 孙爱军 1 , 2 , 5   
  1. 1.中国科学院西北生态环境资源研究院 沙漠与沙漠化重点实验室,甘肃 兰州 730000
    2.中国科学院 大学,北京 100049
    3.太原师范学院管理系,山西 晋中 030619
    4.陕西师范大学 地理科学与旅游学院,陕西 西安 710119
    5.兰州大学资源环境学院 西部环境教育部重点实验室,甘肃 兰州 730000
  • 收稿日期:2022-01-03 修回日期:2022-03-03 出版日期:2022-12-10
  • 通讯作者: 靳鹤龄 E-mail:xmzhang_123@163.com;jinhl@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目“鄂尔多斯高原风成沉积记录的全新世冬夏季风演变及相位关系研究”(41977393)

Effective Moisture Variation in the Kobq Desert Since the Last Glacial Maximum and Its Response to Global Change

Xiaomei ZHANG 1 , 2( ), Heling JIN 1( ), Bing LIU 1, Xiaolei LIANG 3, Aimin LIANG 4, Aijun SUN 1 , 2 , 5   

  1. 1.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Department of Management, Taiyuan Normal University, Jinzhong Shanxi 030619, China
    4.School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
    5.Key Laboratory of Western China’s Environmental Systems, Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2022-01-03 Revised:2022-03-03 Online:2022-12-10 Published:2022-12-16
  • Contact: Heling JIN E-mail:xmzhang_123@163.com;jinhl@lzb.ac.cn
  • About author:ZHANG Xiaomei (1994-), female, Xinzhou City, Shanxi Province, Ph.D student. Research area includes desert environment evolution. E-mail: xmzhang_123@163.com
  • Supported by:
    the National Natural Science Foundation of China “Holocene winter and summer monsoonal evolutions and their phase relationship recorded by the aeolian deposits in the Ordos Plateau”(41977393)

中国北方季风边缘区沙漠对气候变化响应极其敏感,是研究气候环境变化的理想区域,其环境演变研究对理解全球变化的区域响应具有重要科学意义。研究表明末次盛冰期以来季风边缘区沙漠环境演变主要受控于亚洲夏季风强度变化及其所带来的降水量的多寡,然而库布齐沙漠却存在早全新世风沙活动和季风降水同时增强的矛盾。以库布齐沙漠北缘WK剖面为例,对风成沉积进行了释光年代控制的多指标分析。结果表明:区域有效湿度变化总体遵循“季风”模式,经历了相对较低(28~26 ka)—显著低值[末次盛冰期(26~18 ka)]—逐渐增加[末次冰消期和早全新世(18~8 ka)]—总体较高[中全新世(8~2 ka)]—逐渐降低[晚全新世(2~0 ka)]的过程。对比研究发现末次盛冰期—全新世尺度北半球太阳辐射和冰量变化同时影响着区域有效湿度,此结果进一步支持中国北方季风边缘区环境变化高低纬双重驱动的观点。

Deserts in the northern monsoon margin of China are extremely sensitive to climate change and are, therefore, ideal for studying climate and environmental change. Specifically, their environmental evolution is scientifically important for understanding the regional responses to global change. Studies have shown that the environmental evolution of deserts in the monsoonal fringe, since the Last Glacial Maximum, is mainly controlled by variations in the Asian summer monsoon intensity and precipitation. However, in the Kobq Desert, there is a mismatch between the simultaneous increase in aeolian sand activity and monsoonal precipitation during the early Holocene. Taking the WK profile at the northern edge as an example, we applied multi-proxy analysis of the chronological sequence of aeolian deposition. The results indicate that the effective moisture variation generally follows the “monsoon” pattern:relatively low (28~26 ka)—significantly low [the Last Glacial Maximum (26~18 ka)]—gradually increasing [the Last Deglaciation and Early Holocene (18~8 ka)]—generally high [the Middle Holocene (8~2 ka)]—gradually decreasing [the Late Holocene (2~0 ka)]. Based on comparative analysis, we found that the regional effective moisture is controlled by the variability of solar insolation and ice volume in the Northern Hemisphere during the Last Glacial Maximum and Holocene, this further supports the view that environmental changes in the northern monsoonal margin of China are driven by high and low latitudes.

中图分类号: 

图1 库布齐沙漠地理位置
Fig. 1 Geographical location of the Kobq Desert
图2 WK剖面野外照片(a)、地层岩性特征(b)及年代序列(c
Fig. 2 Field photoa)、lithostratigraphic characteristicsband chronological sequencescof the WK profile
表1 WK剖面 OSL测年结果及其相关参数
Table 1 Results of the OSL dating and related parameters for the WK profile
表2 WK剖面气候代用指标在不同岩性中的变化
Table 2 Variation of climatic proxies in different lithologies of the WK profile
图3 WK剖面气候代用指标及主成分随年代变化
PCA1和PCA2是通过对7个气候代用指标(碳酸盐、有机质、低频磁化率、化学蚀变指数CIA、湿润指数C值、干旱指数Re及Rb/Sr)进行主成分分析建立的
Fig. 3 Variation of climatic proxies and principal components with age in the WK profile
PCA1 and PCA2 were established by principal component analysis of seven climate proxies (carbonate, organic matter, low frequency magnetization, chemical alteration index CIA, wetness index C value, drought index Re and Rb/Sr)
图4 主成分载荷图
Fig. 4 Principal components loading diagram
图5 库布齐沙漠有效湿度变化与季风边缘区沙漠气候记录对比
Fig. 5 Comparison of effective moisture variation in the Kobq Desert and climate records of deserts in the monsoonal margin region
图6 末次盛冰期以来库布齐沙漠有效湿度变化的成因机制
(a)65°N夏季太阳辐射 45 ;(b)董哥洞和葫芦洞石笋 48 - 49 ;(c)宝鸡剖面 10Be降水量 50 ;(d)榆林剖面TOC含量 51 ;(e)公海年降水量 46 ;(f)TB剖面磁化率 52 ;(g)库布齐沙漠有效湿度变化(PCA1);(h)库布齐沙漠风成砂概率密度 53 ;(i)库布齐沙漠古土壤概率密度 53 ;(j)海平面变化 54 ;(k)北半球冰量 55
Fig. 6 Forming mechanisms of effective moisture variation in the Kobq Desert since the Last Glacial Maximum
(a) Summer insolation at 65°N 45 ; (b) Dongge Cave and Hulu Cave stalagmites 48 - 49 ; (c) Precipitation based on 10Be in Baoji profile 50 ; (d) TOC content in Yulin profile 51 ; (e) Annual precipitation in Gonghai Lake 46 ; (f) Magnetic susceptibility in TB profile 52 ; (g) Effective moisture variation in the Kobq Desert (PCA1); (h) Probability density curve of aeolian sand in the Kobq Desert 53 ; (i) Probability density curve of paleosol in the Kobq Desert 53 ; (j) Sea level change 54 ; (k) Ice volume in the Northern Hemisphere 55
1 SUN J M, LI S H, HAN P, et al. Holocene environmental changes in the central Inner Monglia, based on the single-aliquot-quartz optical dating and multi-proxy study of dune sands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(1/2): 51-62.
2 CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119.
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
3 JIN H L, SUN L Y, SUN Z, et al. Millennial-scale evolution of Hunshandake Desert and climate change during the Holocene in Inner Mongolia, northern China[J]. Sciences in Cold and Arid Regions, 2010, 2 (6): 505-513.
4 YAN Xinyang, ZHANG Qiang, YAN Xiaomin, et al. An overview of distribution characteristics and formation mechanisms in global arid areas[J]. Advances in Earth Science, 2019, 34(8): 826-841.
闫昕旸, 张强, 闫晓敏, 等. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
5 WANG T, HAN P, WU S, et al. Deserts and aeolian desertification in China[M]. Beijing: Science Press, 2011.
6 ZHOU W J, DODSON J, HEAD M J, et al. Environmental variability within the Chinese desert-loess transition zone over the last 20,000 years[J]. The Holocene, 2002, 12(1): 107-112.
7 BUSH A B G, ROKOSH D, RUTTER N W, et al. Desert margins near the Chinese Loess Plateau during the mid-Holocene and at the Last Glacial Maximum: a model-data intercomparison[J]. Global and Planetary Change, 2002, 32(4): 361-374.
8 LI S H, CHEN Y Y, LI B, et al. OSL dating of sediments from deserts in Northern China[J]. Quaternary Geochronology, 2007, 2(1/2/3/4): 23-28.
9 ZENG Lin, LU Huayu, YI Shuangwen, et al. Environmental changes of Hulun Buir dunefield in northeastern China during the Last Glacial Maximum and Holocene Optimum[J]. Quaternary Sciences, 2013, 33(2): 243-251.
曾琳, 鹿化煜, 弋双文, 等. 末次盛冰期和全新世大暖期呼伦贝尔沙地的环境变化[J]. 第四纪研究, 2013, 33(2): 243-251.
10 YANG L H, WANG T, ZHOU J, et al. OSL chronology and possible forcing mechanisms of dune evolution in the Horqin dunefiled in Northern China since the Last Glacial Maximum[J]. Quaternary Research, 2012, 78(2): 185-196.
11 ZHOU Y L, LU H Y, JOSEPH M, et al. Optically stimulated luminescence dating of aeolian sand in the Otindag dune field and Holocene climate change[J]. Science in China Series D: Earth Sciences, 2008, 51(6): 837-847.
12 JIA F F, LU R J, GAO S Y, et al. Holocene aeolian activities in the southeastern Mu Us Desert, China[J]. Aeolian Research, 2015, 19(B): 267-274.
13 PENG J, DONG Z B, HAN F Q. Optically stimulated luminescence dating of sandy deposits from Gulang County at the southern margin of the Tengger Desert, China[J]. Journal of Arid Land, 2016, 8(1): 1-12.
14 ZHU Zhenda, WU Zheng, LIU Shu, et al. An introduction to the deserts in China[M]. Beijing: Science Press, 1980: 46-55.
朱震达, 吴正, 刘恕, 等. 中国沙漠概论[M]. 北京: 科学出版社, 1980: 46-55.
15 XU Y T, LAI Z P, CHEN T Y, et al. Late Quaternary Optically Stimulated Luminescence (OSL) chronology and environmental changes in the Hobq Desert, Northern China[J]. Quaternary International, 2018, 470: 18-25.
16 FAN Y X, CHEN X L, FAN T L, et al. Sedimentary and OSL dating evidence for the development of the present Hobq desert landscape, Northern China[J]. Science China Earth Sciences, 2013, 56(12): 2 037-2 044.
17 YANG X P, FORMAS S, HU F G, et al. Initial insights into the age and origin of the Kubuqi sand sea of Northern China[J]. Geomorphology, 2016, 259: 30-39.
18 CHEN C T A, LAN H C, LOU J Y, et al. The dry Holocene Megathermal in Inner Mongolia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193(2): 181-200.
19 JIANG Yajuan, WANG Wei, MA Yuzhen, et al. A preliminary study on Holocene climate change of Ordos Plateau, as inferred by sedimentary record from Bojianghaizi Lake of Inner Mongolia, China[J]. Quaternary Sciences, 2014, 34(3): 654-665.
姜雅娟, 王维, 马玉贞, 等. 内蒙古鄂尔多斯高原泊江海子全新世气候变化初步研究[J]. 第四纪研究, 2014, 34(3): 654-665.
20 GUAN Chao, LIU Dan, ZHOU Yanguang, et al. Historical evolution of the fluvial and aeolian landscapes in the Hobq Desert[J]. Arid Zone Research, 2017, 34(2): 395-402.
管超, 刘丹, 周炎广, 等. 库布齐沙漠水沙景观的历史演变[J]. 干旱区研究, 2017, 34(2): 395-402.
21 BAO Xiaoqing, CHEN Quchang. Desert eroded situation and its reform composition in the Kubuqi region[J]. Research of Soil and Water Conservation, 1998, 5(3): 26-29, 50.
包小庆, 陈渠昌. 库布齐沙漠侵蚀状况及治理构想[J]. 水土保持研究, 1998, 5(3): 26-29, 50.
22 YUN Lingqiang, TANG Li. Division of natural region in Kubuqi Desert[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2009, 30(3): 99-106.
云凌强, 唐力. 库布齐沙漠自然地带分异规律分析[J]. 内蒙古农业大学学报(自然科学版), 2009, 30(3): 99-106.
23 YANG Xiaoping, LIANG Peng, ZHANG Deguo, et al. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications[J]. Science China: Earth Sciences, 2019, 49(8): 1 293-1 307.
杨小平, 梁鹏, 张德国,等. 中国东部沙漠/沙地全新世地层序列及其古环境[J]. 中国科学: 地球科学, 2019, 49(8): 1 293-1 307.
24 CHEN Fahu, FAN Yuxin, CHUN Xi, et al. Preliminary study on the “Jilantai-Hetao” ancient lake in Late Quaternary[J]. Chinese Science Bulletin, 2008, 53(10): 1 207-1 219.
陈发虎, 范育新, 春喜, 等. 晚第四纪“吉兰泰—河套”古大湖的初步研究[J]. 科学通报, 2008, 53(10): 1 207-1 219.
25 SUN Baoyang, LI Zhanbin, ZHANG Yang, et al. Spatiotemporal variation of wind erosion intensity in region of Ten Small Tributaries in Inner Monglia branch of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 112-119.
孙宝洋, 李占斌, 张洋, 等. 黄河内蒙古支流“十大孔兑”区风蚀强度时空变化特征[J]. 农业工程学报, 2016, 32(17): 112-119.
26 ZHAO H, LI S H, LI B, et al. Holocene climate changes in westerly-dominated areas of central Asia: evidence from optical dating of two loess sections in Tianshan Mountain, China[J]. Quaternary Geochronology, 2015, 30: 188-193.
27 AITKEN M J. An introduction to optical dating[M]. Oxford: Oxford University Press, 1998: 15-35.
28 PRESCOTT J R, HUTTON J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2/3): 497-500.
29 ZHAO H, LI S H. Internal dose rate to K-feldspar grains from radioactive elements other than potassium[J]. Radiation Measurements, 2005, 40(1): 84-93.
30 BLAAUW M, CHRISTEN J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474.
31 ZHAO H, LU Y C, YIN J H. Optical dating of Holocene sand dune activities in the Horqin sand-fields in Inner Mongolia, China, using the SAR protocol[J]. Quaternary Geochronology, 2007, 2(1/2/3/4): 29-33.
32 LIU Bing, JIN Heling, SUN Zhong. Climate change in east Horqin Sandy Land since 6.0ka BP[J]. Journal of Desert Research, 2011, 31(6): 1 398-1 405.
刘冰,靳鹤龄, 孙忠. 近6ka以来科尔沁沙地东部气候变化记录[J]. 中国沙漠, 2011, 31(6): 1 398-1 405.
33 AN Z S, KUKLA G J, PORTER S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years[J]. Quaternary Research, 1991, 36(1): 29-36.
34 JIN Heling, SU Zhizhu, SUN Liangying, et al. Holocene climate change in Otindag Sandy Land[J]. Chinese Science Bulletin, 2004, 49(15): 1 532-1 536.
靳鹤龄, 苏志珠, 孙良英, 等. 浑善达克沙地全新世气候变化[J]. 科学通报, 2004, 49(15): 1 532-1 536.
35 ZHANG Hucai, LI Jijun, MA Yuzhen, et al. A study on elemental geochemical characters of the Wuwei loess section in the south vicinity of Tengger Desert[J]. Acta Sedimentologica Sinica, 1997, 15(4): 153-158.
张虎才, 李吉均, 马玉贞, 等. 腾格里沙漠南缘武威黄土沉积元素地球化学特征[J]. 沉积学报, 1997, 15(4): 153-158.
36 JIN Heling, XIAO Honglang, ZHANG Hong, et al. Evolution and climate changes of the juyan lake revealed from grain size and geochemistry element since 1 500 a BP[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 233-240.
靳鹤龄, 肖洪浪, 张洪, 等. 粒度和元素证据指示的居延海1.5ka BP来环境演化[J]. 冰川冻土, 2005, 27(2): 233-240.
37 MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101(2): 295-303.
38 NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5 885): 715-717.
39 JIN H L, DONG G R, SU Z Z, et al. Reconstruction of the spatial patterns of desert/loess boundary belt in North China during the Holocene[J]. Chinese Science Bulletin, 2001, 46 (12): 969-974.
40 LIU H Y, XU L H, CUI H T. Holocene history of desertification along the woodland-steppe border in Northern China[J]. Quaternary Research, 2002, 57(2): 259-270.
41 CHEN Yang, CHEN Jun, LIU Lianwen, et al. Rb/Sr record and temporal and spatial change of summer monsoon in the Loess Plateau during the last 130,000 years[J]. Science in China Series D: Earth Sciences, 2003,33(6): 513-519.
陈旸, 陈骏, 刘连文, 等. 最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J]. 中国科学D辑: 地球科学, 2003,33(6): 513-519.
42 YI Shuangwen, LU Huayu, ZHOU Yali, et al. Rb/Sr geochemistry of loess deposits in the Horqin dunefield, northeastern China, and its implications for climate change during late Quaternary[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 129-136.
弋双文, 鹿化煜, 周亚利, 等. 晚第四纪科尔沁黄土堆积的Rb-Sr地球化学特征及古气候变化[J]. 海洋地质与第四纪地质, 2013, 33(2): 129-136.
43 CHEN J, AN Z S, HEAD J. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology[J]. Quaternary Reasearch, 1999, 51(3): 215-219.
44 LU H Y, MIAO X D, ZHOU Y L, et al. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing[J]. Geophysical Research Letters, 2005, 32(21): L21716.
45 BERGER A, LOUTER M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317.
46 CHEN F H, XU Q H, CHEN J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186.
47 WEN R L, XIAO J L, FAN J W, et al. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China[J]. Quaternary Science Reviews, 2017, 176: 29-35.
48 WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294(29): 2 345-2 348.
49 DYKOSKI C A, EDWARDS R L, CHENG H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
50 BECK J W, ZHOU W J, LI C, et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6 391): 877-881.
51 LU H Y, YI S W, LIU Z Y, et al. Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing[J]. Geology, 2013, 41(9): 1 023-1 026.
52 ZHOU Y W, HAN Z Y, LI X S, et al. Sandy loess records of precipitation changes and monsoon migrations in the Hunshandake Sandy Land since the Last Glacial Maximum[J]. Paleoceanography and Paleoclimatology, 2018, 33(9): 945-957.
53 ZHANG Xiaomei, JIN Heling, LIU Bing. Environment changes in the Hobq Desert since the Last Glacial Maximum[J]. Journal of Desert Research, 2021, 41(5): 81-93.
张小梅, 靳鹤龄, 刘冰. 末次盛冰期以来库布齐沙漠环境变化[J]. 中国沙漠, 2021, 41(5): 81-93.
54 XIN Liguo, LI Guangxue, LI Xishuang, et al. Analysis of sea-level variation in the East China Sea since the Last Glacial Maximum[J]. Periodical of Ocean University of China, 2006, 36(5): 699-704, 698.
辛立国, 李广雪, 李西双, 等. 中国东海2万年来海平面变化分析[J]. 中国海洋大学学报(自然科学版), 2006, 36(5): 699-704, 698.
55 GOWAN E J, ZHANG X, KHOSRAVI S, et al. A new global ice sheet reconstruction for the past 80000 years[J]. Nature Communications, 2021, 12: 1199.
56 LU H Y, YI S W, XU Z W, et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J]. Chinese Science Bulletin, 2013, 58(23): 2 775-2 783.
57 XU Z W, LU H Y, YI S W, et al. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field,north-central China[J]. Earth and Planetary Science Letters, 2015, 427: 149-159.
58 XU Q H, XIAO J L, LI Y C, et al. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai Lake area, Inner Mongolia, China[J]. Journal of Climate, 2010, 23(11): 2 856-2 868.
59 DYKE A S. An outline of North American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2: 373-424.
60 WANG Y J, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon: links to solar changes and north Atlantic climate[J]. Science, 2005, 308(5 723): 854-857.
[1] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[2] 王淼, 陈勇, 徐兴友, 张学军, 韩云, 王成军, 曹梦春. 泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展[J]. 地球科学进展, 2015, 30(10): 1107-1118.
[3] 刘冰,靳鹤龄,孙忠,苏志珠,张彩霞. 青藏高原东北部共和盆地风成沉积地球[J]. 地球科学进展, 2012, 27(7): 788-799.
[4] 吴帅男,陈仕涛, 段福才. 北半球72 ka BP气候突变事件及其与Toba火山的关系[J]. 地球科学进展, 2012, 27(1): 35-41.
[5] 高金耀,吴招才,王健,杨春国,张涛. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-588.
[6] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[7] 曹光杰,王建,屈贵贤. 末次盛冰期以来长江河口段河道演变研究综述[J]. 地球科学进展, 2006, 21(10): 1039-1045.
[8] 于 革. 花粉植被化与全球古植被计划研究[J]. 地球科学进展, 1999, 14(3): 306-311.
[9] 马柯阳. 凝析油形成新模式——原油蒸发分馏机制研究[J]. 地球科学进展, 1995, 10(6): 567-571.
[10] 任国玉. 国外末次冰期极盛期以来陆地植物花粉研究主要进展[J]. 地球科学进展, 1994, 9(2): 59-64.
[11] 任国玉. 国外末次冰期极盛期以来环境演变研究的主要特点[J]. 地球科学进展, 1994, 9(2): 65-69.
[12] 张泽明; 游振东. 大别山榴辉岩带的研究进展及评述[J]. 地球科学进展, 1993, 8(4): 38-44.
[13] 时伟荣,沈焕庭,李九发. 河口浑浊带成因综述[J]. 地球科学进展, 1993, 8(1): 8-13.
阅读次数
全文


摘要