地球科学进展 ›› 2022, Vol. 37 ›› Issue (12): 1223 -1231. doi: 10.11867/j.issn.1001-8166.2022.069

综述与评述 上一篇    下一篇

甾醇类单体化合物纯化分析技术及其同位素应用的研究进展
李莉 1( ), 于蒙 1 , 2( ), 赵美训 1 , 2   
  1. 1.中国海洋大学深海圈层与地球系统前沿科学中心和海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室 海洋生态与环境科学 功能实验室,山东 青岛 266237
  • 收稿日期:2022-05-03 修回日期:2022-09-14 出版日期:2022-12-10
  • 通讯作者: 于蒙 E-mail:lilee@ouc.edu.cn;yumeng@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目“基于生物标志物和14C的东海沉积陆源有机质埋藏效率和机制研究”(41906032)

A Review of Techniques of Purification of Source-Specific Sterols for Compound-Specific Isotope Analysis and Applications

Li LI 1( ), Meng YU 1 , 2( ), Meixun ZHAO 1 , 2   

  1. 1.Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
    2.Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
  • Received:2022-05-03 Revised:2022-09-14 Online:2022-12-10 Published:2022-12-16
  • Contact: Meng YU E-mail:lilee@ouc.edu.cn;yumeng@ouc.edu.cn
  • About author:LI Li (1982-), female, Pingdu City, Shandong Province, Ph. D student. Research area includes marine organic geochemistry. E-mail: lilee@ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Burial efficiency and mechanistic controls of terrestrial organic matter in East China Sea: constrained by biomarker and 14C”(41906032)

甾醇类化合物作为一类来源明确的生物标志物,其碳氢同位素分析技术是古环境研究中很有价值的工具。甾醇的氢同位素值具有重建古水文环境和古海洋盐度的潜力,成为古气候研究中最佳的氢同位素分析目标物。利用气相色谱—稳定同位素比质谱仪获得高精度的同位素值需要目标分析物和邻近化合物之间有较高的分离度,即能排除邻近峰的影响。然而自然环境样品中的甾醇类化合物难以纯化,在一定程度上限制了甾醇单体同位素在古环境研究中的广泛应用。通过总结几种不断改进的制备液相色谱纯化制备甾醇类单体化合物的方法,综合介绍了甾醇类单体化合物纯化分析技术及其同位素应用的研究现状。在实验室成功分离甲藻甾醇和菜子甾醇的基础上,拟通过将我国边缘海沉积物中的甾醇单体化合物分离、纯化和富集,使其能够满足稳定氢同位素和碳同位素的测定要求,为我国边缘海环境参数重建研究提供技术支持。

Source-specific biomarkers are the best targets for isotope analysis and paleoclimatic applications. Compound-specific hydrogen isotope (δ2H) measurements of sterols can be applied to the reconstruction of hydroclimatic conditions and paleo-sea surface salinity. Precise measurements using gas chromatography-isotope ratio mass spectrometry require a high baseline resolution between target analyte and adjacent compounds. However, isotope analysis of sterols for paleoclimatic applications is limited due to the difficulty in purifying complex natural samples. This study aimed to review several improved purification methods of source-specific sterols using liquid chromatography and the applications of compound-specific isotope analysis of sterols in lakes or seas. In addition, we successfully purified dinosterol and brassicasterol from the Chinese marginal sea surface sediments, meeting the requirements for δ2H and carbon isotope analysis. This study provides significant insights and technical support for the paleoenvironmental reconstruction in the Chinese marginal seas.

中图分类号: 

图1 制备液相色谱—质谱联用仪组成示意图
Fig. 1 The schematic diagram of a Pre-HPLC-MS system
图2 同时与甲藻甾醇在气相色谱洗脱出来的4α-甲基甾醇(a)和4α-去甲基甾醇(b)的分子结构式 1
Fig. 2 Structures of thea4α-methyl sterols andb4α-desmethyl sterols that closely elute with dinosterol in GC 1
图3 切萨皮克湾中颗粒物(实心圆)和沉积物(空心圆)中甲藻甾醇的 δ2H值与水的 δ2H值(a)和盐度(b)的关系 7
Fig. 3 Relationship between δ2Hdino and δ2Hwateraand salinitybin suspended particlesfilled circlesand surface sedimentopen circlesfrom the Chesapeake Bay 7
表1 液相色谱流动相洗脱梯度
Table 1 HPLC gradient program of mobile phase
图4 甾醇的制备液相色谱图
Fig. 4 Chromatogram of sterols from HPLC
图5 制备液相色谱分离前后的乙酰化甲藻甾醇和菜子甾醇气相色谱图对比
(a)液相色谱分离之前的乙酰化甾醇组分GC色谱图;(b)液相分离之后的乙酰化菜子甾醇GC色谱图;(c)液相分离之后的乙酰化甲藻甾醇GC色谱图
Fig. 5 Gas chromatograms of dinosterol-and brassicasterol-acetate before and after HPLC purification
(a) Gas chromatogram of sterol-acetate before HPLC purification; (b) Gas chromatogram of brassicasterol-acetate after HPLC purification; (c) Gas chromatogram of dinosterol-acetate after HPLC purification
图6 PCGC分离之后的甲藻甾醇气相色谱图
Fig. 6 Gas chromatogram of dinosterol-acetate after PCGC purification
1 ATWOOD A R, SACHS J P. Purification of dinosterol from complex mixtures of sedimentary lipids for hydrogen isotope analysis[J]. Organic Geochemistry, 2012, 48: 37-46.
2 SACHSE D, BILLAULT I, BOWEN G J, et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 221-249.
3 MALONEY A E, RICHEY J N, NELSON D B, et al. Contrasting Common Era climate and hydrology sensitivities from paired lake sediment dinosterol hydrogen isotope records in the South Pacific Convergence Zone[J]. Quaternary Science Reviews, 2022, 281: 107421.
4 XING L, SACHS J P, ZHANG H L, et al. Hydrogen isotopes in palmitic and stearic acids in suspended particles from the Changjiang River Estuary[J]. Science China Earth Sciences, 2016, 59(5): 981-988.
5 YUAN Zineng, XING Lei, ZHANG Hailong, et al. Progress of biomarker stable hydrogen isotope and its application to marine paleoenvironmental reconstruction[J]. Advances in Earth Science, 2012, 27(3): 276-283.
袁子能, 邢磊, 张海龙, 等. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
6 JIA Jiayuan, HE Juan, WEI Bingbing, et al. Relationship between compound-specific δD of marine algae biomarkers and surface seawater salinity and its implication for paleoceanography reconstruction[J]. Advances in Earth Science, 2022, 37(4): 392-406.
贾佳源, 贺娟, 韦兵兵, 等. 海洋藻类生物标志物单体氢同位素与表层海水盐度关系研究进展与启示[J]. 地球科学进展, 2022, 37(4): 392-406.
7 SACHS J P, SCHWAB V F. Hydrogen isotopes in dinosterol from the Chesapeake Bay Estuary[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 444-459.
8 ENGLEBRECHT A C, SACHS J P. Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 253-4 265.
9 SCHOUTEN S, OSSEBAAR J, SCHREIBER K, et al. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica[J]. Biogeosciences, 2006, 3: 113-119 .
10 SCHWAB V F, SACHS J P. Hydrogen isotopes in individual alkenones from the Chesapeake Bay Estuary[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7 552-7 565.
11 ZHANG Zhaohui, SACHS J P. Hydrogen isotope fractionation in freshwater algae: I. variations among lipids and species[J]. Organic Geochemistry, 2007, 38(4): 582-608.
12 SESSIONS A L, BURGOYNE T W, SCHIMMELMANN A, et al. Fractionation of hydrogen isotopes in lipid biosynthesis[J]. Organic Geochemistry, 1999, 30(9): 1 193-1 200.
13 VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/6/7): 1 163-1 179.
14 VOLKMAN J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506.
15 SCHWAB V F, SACHS J P. The measurement of D/H ratio in alkenones and their isotopic heterogeneity[J]. Organic Geochemistry, 2009, 40(1): 111-118.
16 SMITTENBERG R H, SAENGER C, DAWSON M N, et al. Compound-specific D/H ratios of the marine lakes of Palau as proxies for West Pacific Warm Pool hydrologic variability[J]. Quaternary Science Reviews, 2011, 30(7/8): 921-933.
17 SACHSE D, KAHMEN A, GLEIXNER G. Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acerpseudoplatanus)[J]. Organic Geochemistry, 2009, 40(6): 732-742.
18 BARRETT S M, VOLKMAN J K, DUNSTAN G A, et al. Sterols of 14 species of marine diatoms (bacillariophyta)[J]. Journal of Phycology, 1995, 31(3): 360-369.
19 van der MEER M T J, BAAS M, RIJPSTRA W I C, et al. Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 594-600.
20 van der MEER M T J, SANGIORGI F, BAAS M, et al. Molecular isotopic and dinoflagellate evidence for late Holocene freshening of the black sea[J]. Earth and Planetary Science Letters, 2008, 267(3/4): 426-434.
21 KASPER S, van der MEER M T J, CASTAÑEDA I S, et al. Testing the alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel)[J]. Organic Geochemistry, 2015, 78: 62-68.
22 GOULD J, KIENAST M, DOWD M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy[J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497.
23 MALONEY A E, NELSON D B, RICHEY J N, et al. Reconstructing precipitation in the tropical South Pacific from dinosterol 2H/1H ratios in lake sediment[J]. Geochimica et Cosmochimica Acta, 2019, 245: 190-206.
24 HOLTVOETH J, WHITESIDE J H, ENGELS S, et al. The paleolimnologist’s guide to compound-specific stable isotope analysis—an introduction to principles and applications of CSIA for Quaternary Lake sediments[J]. Quaternary Science Reviews, 2019, 207: 101-133.
25 SMITTENBERG R H, SACHS J P. Purification of dinosterol for hydrogen isotopic analysis using high-performance liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2007, 1 169(1/2): 70-76.
26 NELSON D B, SACHS J P. Concurrent purification of sterols, triterpenols and alkenones from sediments for hydrogen isotope analysis using high performance liquid chromatography[J]. Organic Geochemistry, 2013, 64: 19-28.
27 CHIKARAISHI Y. Carbon and hydrogen isotopic composition of sterols in natural marine brown and red macroalgae and associated shellfish[J]. Organic Geochemistry, 2006, 37(4): 428-436.
28 CHIKARAISHI Y, YAMADA Y, NARAOKA H. Carbon and hydrogen isotopic compositions of sterols from riverine and marine sediments[J]. Limnology and Oceanography, 2005, 50(6): 1 763-1 770.
29 CHIKARAISHI Y, NARAOKA H. δ 13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan)[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 285-3 297.
30 DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
31 van der MEER M T J, BENTHIEN A, FRENCH K L, et al. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2015, 160: 16-24.
32 NELSON D B, SACHS J P. The influence of salinity on D/H fractionation in dinosterol and brassicasterol from globally distributed saline and hypersaline lakes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 325-339.
33 RICHEY J N, SACHS J P. Precipitation changes in the western tropical Pacific over the past Millennium[J]. Geological Society of America, 2016, 44(8): 671-674.
34 SACHS J P, BLOIS J L, MCGEE T, et al. Southward shift of the Pacific ITCZ during the Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(12): 1 383-1 395.
35 SACHS J P, MÜGLER I, SACHSE D, et al. Last millennium hydroclimate in the central equatorial North Pacific (5°N, 160°W)[J]. Quaternary Science Reviews, 2021, 259. DOI:10.1016/j.quascirev.2021.106906 .
36 JIAO N Z, LIANG Y T, ZHANG Y Y, et al. Carbon pools and fluxes in the China Seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1 535-1 563.
37 ZHANG Y, ZHAO M X, CUI Q, et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink[J]. Science China Earth Sciences, 2017, 60(5): 809-820.
38 XING Lei, ZHAO Meixun, ZHANG Hailong, et al. Biomarker records of phytoplankton community structure changes in the Yellow Sea over the last 200 years[J]. Periodical of Ocean University of China, 2009, 39(2): 317-322.
邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报(自然科学版), 2009, 39(2): 317-322.
39 XING Lei, ZHANG Hailong, YUAN Zineng, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1 106-1 115.
[1] 贾佳源, 贺娟, 韦兵兵, 贾国东, 李丽. 海洋藻类生物标志物单体氢同位素与表层海水盐度关系研究进展与启示[J]. 地球科学进展, 2022, 37(4): 392-406.
[2] 肖睿, 包锐, 邢磊. 长链烯酮单体碳 -14同位素分析技术进展与研究意义[J]. 地球科学进展, 2021, 36(12): 1258-1271.
[3] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[4] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[5] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[6] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[7] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[8] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[9] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[10] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[11] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[12] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
阅读次数
全文


摘要