1 |
IPCC. 2021: Summary for policymakers[M]// Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 2022, in press.
|
2 |
SILLMANN J, KHARIN V V, ZWIERS F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. future climate projections[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2 473-2 493.
|
3 |
CHEN H P, SUN J Q, LIN W Q, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Science Bulletin, 2020, 65(17): 1 415-1 418.
|
4 |
The United Nations. The United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement[M]. UNFCCC Conference of the Parties. FCCC/CP/ 2015/10/Add.1. 2015:1-32.
|
5 |
XU Ying, ZHOU Botao, WU Jie, et al. Asian climate change in response to four global warming targets[J]. Climate Change Research, 2017, 13(4): 306-315.
|
|
徐影, 周波涛, 吴婕, 等. 1.5~4 ℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315.
|
6 |
ZHAI Panmao, YU Rong, ZHOU Baiquan, et al. Research progress in impact of 1.5 ℃ global warming on global and regional scales[J]. Climate Change Research, 2017, 13(5): 465-472.
|
|
翟盘茂, 余荣, 周佰铨, 等. 1.5 ℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5): 465-472.
|
7 |
RAFTERY A E, ZIMMER A, FRIERSON D M W, et al. Less than 2 ℃ warming by 2100 unlikely[J]. Nature Climate Change, 2017, 7(9): 637-641.
|
8 |
CHEN H P, SUN J Q. Projected changes in climate extremes in China in a 1.5 ℃ warmer world[J]. International Journal of Climatology, 2018, 38(9): 3 607-3 617.
|
9 |
ZHOU T J, SUN N, ZHANG W X, et al. When and how will the Millennium Silk Road witness 1.5℃ and 2℃ warmer worlds?[J]. Atmospheric and Oceanic Science Letters, 2018, 11(2): 180-188.
|
10 |
SHI C, JIANG Z H, CHEN W L, et al. Changes in temperature extremes over China under 1.5 ℃ and 2 ℃ global warming targets[J]. Advances in Climate Change Research, 2018, 9(2): 120-129.
|
11 |
SUN C X, JIANG Z H, LI W, et al. Changes in extreme temperature over China when global warming stabilized at 1.5 ℃ and 2.0 ℃[J]. Scientific Reports, 2019, 9(1): 14982.
|
12 |
YANG Y, TANG J P, WANG S Y, et al. Differential impacts of 1.5 and 2 ℃ warming on extreme events over China using statistically downscaled and bias-corrected CESM low-warming experiment[J]. Geophysical Research Letters, 2018, 45(18): 9 852-9 860.
|
13 |
LI H X, CHEN H P, WANG H J, et al. Future precipitation changes over China under 1.5 ℃ and 2.0 ℃ global warming targets by using CORDEX regional climate models[J]. The Science of the Total Environment, 2018, 640/641: 543-554.
|
14 |
EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6)experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958.
|
15 |
ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project phase 6(CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.
|
|
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
|
16 |
GUSAIN A, GHOSH S, KARMAKAR S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall[J]. Atmospheric Research, 2020, 232: 104680.
|
17 |
WANG Yu, LI Huixin, WANG Huijun, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5[J]. Acta Meteorologica Sinica, 2021, 79(3): 369-386.
|
|
王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79(3): 369-386.
|
18 |
ZHU H H, JIANG Z H, LI J, et al. Does CMIP6 inspire more confidence in simulating climate extremes over China?[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1 119-1 132.
|
19 |
ZHU H H, JIANG Z H, LI L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6[J]. Science Bulletin, 2021, 66(24): 2 528-2 537.
|
20 |
KNUTTI R, FURRER R, TEBALDI C, et al. Challenges in combining projections from multiple climate models[J]. Journal of Climate, 2010, 23(10): 2 739-2 758.
|
21 |
ZHOU Botao, WEN Qiuzi Han, XU Ying, et al. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J]. Journal of Climate, 2014, 27(17): 6 591-6 611.
|
22 |
CHEN Weilin, JIANG Zhihong, LI L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs[J]. Journal of Climate, 2011, 24(17): 4 741-4 756.
|
23 |
LI W, JIANG Z H, XU J J, et al. Extreme precipitation indices over China in CMIP5 models. part II: probabilistic projection[J]. Journal of Climate, 2016, 29(24): 8 989-9 004.
|
24 |
KNUTTI R, SEDLÁČEK J, SANDERSON B M, et al. A climate model projection weighting scheme accounting for performance and interdependence[J]. Geophysical Research Letters, 2017, 44(4): 1 909-1 918.
|
25 |
LI T, JIANG Z H, ZHAO L L, et al. Multi-model ensemble projection of precipitation changes over China under global warming of 1.5 and 2℃ with consideration of model performance and independence[J]. Journal of Meteorological Research, 2021, 35(1): 184-197.
|
26 |
GIORGI F, MEARNS L O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method[J]. Journal of Climate, 2002, 15(10): 1 141-1 158.
|
27 |
GIORGI F, MEARNS L O. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method[J]. Geophysical Research Letters, 2003, 30(12): 1629.
|
28 |
XU Y, GAO X, GIORGI F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Research, 2010, 41: 61-81.
|
29 |
MIAO C Y, DUAN Q Y, SUN Q H, et al. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia[J]. Environmental Research Letters, 2014, 9(5): 055007.
|
30 |
TEGEGNE G, KIM Y O, LEE J K. Spatiotemporal reliability ensemble averaging of multimodel simulations[J]. Geophysical Research Letters, 2019, 46(21): 12 321-12 330.
|
31 |
WU Jia, GAO Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 102-1 111.
|
|
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1 102-1 111.
|
32 |
O'NEILL B C, TEBALDI C, van VUUREN D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3 461-3 482.
|
33 |
RIAHI K, van VUUREN D P, KRIEGLER E, et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42: 153-168.
|
34 |
ZHANG X B, ALEXANDER L, HEGERL G C, et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. WIREs Climate Change, 2011, 2(6): 851-870.
|
35 |
JIANG Z H, LI W, XU J J, et al. Extreme precipitation indices over China in CMIP5 models. part I: model evaluation[J]. Journal of Climate, 2015, 28(21): 8 603-8 619.
|
36 |
HU Ting, SUN Ying, ZHANG Xuebin. Temperature and precipitation projection at 1.5 and 2 ℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26): 3 098-3 111.
|
|
胡婷, 孙颖, 张学斌. 全球1.5和2 ℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3 098-3 111.
|
37 |
FLYNN C M, MAURITSEN T. On the climate sensitivity and historical warming evolution in recent coupled model ensembles[J]. Atmospheric Chemistry and Physics, 2020, 20(13): 7 829-7 842.
|
38 |
ZHOU Tianjun, CHEN Xiaolong. The uncertainty in the 2 ℃ warming threshold issue as related to climate sensitivity and climate feedback[J]. Acta Meteorologica Sinica, 2015, 73(4): 624-634.
|
|
周天军, 陈晓龙. 气候敏感度、气候反馈过程与2 ℃升温阈值的不确定性问题[J]. 气象学报, 2015, 73(4): 624-634.
|