地球科学进展 ›› 2022, Vol. 37 ›› Issue (6): 612 -626. doi: 10.11867/j.issn.1001-8166.2022.028

全球变化研究 上一篇    下一篇

基于可靠性集合平均方法的全球 1.5/2.0 °C变暖下中国极端气候的未来预估
朱欢欢 1( ), 姜胜 2, 江志红 1( )   
  1. 1.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害 预报预警与评估协同创新中心,江苏 南京 210044
    2.无锡学院,江苏 无锡 214105
  • 收稿日期:2022-01-10 修回日期:2022-04-17 出版日期:2022-06-10
  • 通讯作者: 江志红 E-mail:zhu_hh@nuist.edu.cn;zhjiang@nuist.edu.cn
  • 基金资助:
    国家重点研发计划项目“全球增暖1.5 ℃下东亚气候系统的响应及其情景预估”(2017YFA0603804);江苏省研究生科研创新计划项目“多种集合方案预估中国极端气候的对比研究”(KYCX22_1135)

Projection of Climate Extremes over China in Response to 1.5/2.0 °C Global Warming Based on the Reliability Ensemble Averaging

Huanhuan ZHU 1( ), Sheng JIANG 2, Zhihong JIANG 1( )   

  1. 1.Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.Wuxi University, Wuxi Jiangsu 214105, China
  • Received:2022-01-10 Revised:2022-04-17 Online:2022-06-10 Published:2022-06-20
  • Contact: Zhihong JIANG E-mail:zhu_hh@nuist.edu.cn;zhjiang@nuist.edu.cn
  • About author:ZHU Huanhuan (1996-), male, Nantong City, Jiangsu Province, Ph. D student. Research area include climate change. E-mail: zhu_hh@nuist.edu.cn
  • Supported by:
    the National Key Research & Development Program of China “The East Asian climate system response and scenario projection under global warming at 1.5 ℃”(2017YFA0603804);The Postgraduate Research and Practice Innovation Program of Government of Jiangsu Province “Comparative study of multiple ensemble schemes for projecting climate extremes in China”(KYCX22_1135)

全球变暖下我国气候响应的研究对进一步预估我国未来气候变化相关风险及制定适应和减缓政策具有重要意义。利用第六次耦合模式比较计划中25个全球气候模式的模拟结果,评估比较了各种可靠性集合加权方案对中国区域气候的模拟性能,基于表现最好的可靠性集合平均方案预估了SSP2-4.5和SSP5-8.5情景下中国极端气候指数在全球增暖1.5和2.0 °C下的未来变化。结果表明,改进的可靠性集合方案模拟中国气候指数表现最好,与观测的偏差最小。未来中国区域温度明显增加,极端温度的增幅强于平均温度,极端降水整体也增加,且SSP5-8.5情景下增幅略强于SSP2-4.5情景。SSP5-8.5情景下,中国区域平均温度、最高温和最低温在全球增暖1.5(2.0 °C)下较1995—2014年分别增加了1.11、1.18和1.31 °C(1.88、1.98和2.14 °C),总降水和强降水分别增加了5.6%和14.4%(10.5%和25.7%)。中国北方和青藏高原部分区域为增温的大值区,中国西部为降水增加的大值区。额外0.5 °C增暖对中国地区产生显著影响,几乎整个中国地区温度指数的增幅都将超过全球平均。极端降水也将进一步增加,SSP5-8.5情景下中国区域平均总降水额外增加4.9%,强降水增加11.2%。从概率角度来看,2.0 °C变暖下,除南方部分地区外,中国其他区域温度指数增加大于1.5 °C的概率大于50%。北方地区平均降水增幅大于5%阈值的可能性大于50%,大部分地区强降水增幅大于15%阈值的概率大于50%。尽管改进的可靠性集合方案一定程度上减少了预估不确定性,未来仍需要发展优化集合方案及降尺度技术,以提供更准确的未来预估。

Climate response to global warming in China is significant for predicting future climate change risks and formulating adaptation and mitigation policies. This study examined the projections of climate extremes in China under 1.5 and 2 °C global warming based on simulations of 25 climate models from the Coupled Model Intercomparison Project phase 6 under SSP2-4.5 and SSP5-8.5 scenarios. Different reliability ensemble averaging methods were employed to evaluate performance. The results indicated that the upgraded reliability ensemble averaging method showed the best performance in simulating climate indices in China, with the smallest biases compared with observations. There were increases in all temperature and precipitation indices. The increase in the magnitude of the indices under the SSP5-8.5 scenario was slightly greater than that under the SSP2-4.5 scenario. The annual mean temperature, maximum temperature, and minimum temperature, when averaged over the whole of China under the SSP5-8.5 scenario, increased by 1.11, 1.18, and 1.31 °C (1.88, 1.98, and 2.14 °C), respectively, relative to 1995-2014, for 1.5 °C (2 °C) above-preindustrial global warming levels. Increases in Prcptot and R95p were 5.6% and 14.4% (10.5% and 25.7%, respectively). The most remarkable warming occurred in northern China and parts of the Tibetan Plateau. Prcptot and R95p levels increased significantly in most of Western China. Under an additional 0.5 °C of global warming, all temperature indices are expected to increase by more than 0.5°C across China. Prcptot will increase by an additional 4.9%, and R95p will increase by 11.2% when averaged over China under the SSP5-8.5 scenario. Under 2 °C global warming, the probability of all temperature indices increasing by 1.5 °C in China is greater than 50%, except for a few parts of South China. The probability of a Prcptot (R95p) increase of 5% (15%) threshold greater than 50% is found in North China (almost the whole of China). Although the upgraded scheme has reduced the uncertainty of projections to some extent, the development of integration methods and downscaling techniques is required to provide more accurate future projections.

中图分类号: 

1 IPCC. 2021: Summary for policymakers[M]// Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 2022, in press.
2 SILLMANN J, KHARIN V V, ZWIERS F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. future climate projections[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2 473-2 493.
3 CHEN H P, SUN J Q, LIN W Q, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Science Bulletin, 2020, 65(17): 1 415-1 418.
4 The United Nations. The United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement[M]. UNFCCC Conference of the Parties. FCCC/CP/ 2015/10/Add.1. 2015:1-32.
5 XU Ying, ZHOU Botao, WU Jie, et al. Asian climate change in response to four global warming targets[J]. Climate Change Research, 2017, 13(4): 306-315.
徐影, 周波涛, 吴婕, 等. 1.5~4 ℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315.
6 ZHAI Panmao, YU Rong, ZHOU Baiquan, et al. Research progress in impact of 1.5 ℃ global warming on global and regional scales[J]. Climate Change Research, 2017, 13(5): 465-472.
翟盘茂, 余荣, 周佰铨, 等. 1.5 ℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5): 465-472.
7 RAFTERY A E, ZIMMER A, FRIERSON D M W, et al. Less than 2 ℃ warming by 2100 unlikely[J]. Nature Climate Change, 2017, 7(9): 637-641.
8 CHEN H P, SUN J Q. Projected changes in climate extremes in China in a 1.5 ℃ warmer world[J]. International Journal of Climatology, 2018, 38(9): 3 607-3 617.
9 ZHOU T J, SUN N, ZHANG W X, et al. When and how will the Millennium Silk Road witness 1.5℃ and 2℃ warmer worlds?[J]. Atmospheric and Oceanic Science Letters, 2018, 11(2): 180-188.
10 SHI C, JIANG Z H, CHEN W L, et al. Changes in temperature extremes over China under 1.5 ℃ and 2 ℃ global warming targets[J]. Advances in Climate Change Research, 2018, 9(2): 120-129.
11 SUN C X, JIANG Z H, LI W, et al. Changes in extreme temperature over China when global warming stabilized at 1.5 ℃ and 2.0 ℃[J]. Scientific Reports, 2019, 9(1): 14982.
12 YANG Y, TANG J P, WANG S Y, et al. Differential impacts of 1.5 and 2 ℃ warming on extreme events over China using statistically downscaled and bias-corrected CESM low-warming experiment[J]. Geophysical Research Letters, 2018, 45(18): 9 852-9 860.
13 LI H X, CHEN H P, WANG H J, et al. Future precipitation changes over China under 1.5 ℃ and 2.0 ℃ global warming targets by using CORDEX regional climate models[J]. The Science of the Total Environment, 2018, 640/641: 543-554.
14 EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6)experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958.
15 ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project phase 6(CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
16 GUSAIN A, GHOSH S, KARMAKAR S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall[J]. Atmospheric Research, 2020, 232: 104680.
17 WANG Yu, LI Huixin, WANG Huijun, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5[J]. Acta Meteorologica Sinica, 2021, 79(3): 369-386.
王予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79(3): 369-386.
18 ZHU H H, JIANG Z H, LI J, et al. Does CMIP6 inspire more confidence in simulating climate extremes over China?[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1 119-1 132.
19 ZHU H H, JIANG Z H, LI L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6[J]. Science Bulletin, 2021, 66(24): 2 528-2 537.
20 KNUTTI R, FURRER R, TEBALDI C, et al. Challenges in combining projections from multiple climate models[J]. Journal of Climate, 2010, 23(10): 2 739-2 758.
21 ZHOU Botao, WEN Qiuzi Han, XU Ying, et al. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J]. Journal of Climate, 2014, 27(17): 6 591-6 611.
22 CHEN Weilin, JIANG Zhihong, LI L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs[J]. Journal of Climate, 2011, 24(17): 4 741-4 756.
23 LI W, JIANG Z H, XU J J, et al. Extreme precipitation indices over China in CMIP5 models. part II: probabilistic projection[J]. Journal of Climate, 2016, 29(24): 8 989-9 004.
24 KNUTTI R, SEDLÁČEK J, SANDERSON B M, et al. A climate model projection weighting scheme accounting for performance and interdependence[J]. Geophysical Research Letters, 2017, 44(4): 1 909-1 918.
25 LI T, JIANG Z H, ZHAO L L, et al. Multi-model ensemble projection of precipitation changes over China under global warming of 1.5 and 2℃ with consideration of model performance and independence[J]. Journal of Meteorological Research, 2021, 35(1): 184-197.
26 GIORGI F, MEARNS L O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method[J]. Journal of Climate, 2002, 15(10): 1 141-1 158.
27 GIORGI F, MEARNS L O. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method[J]. Geophysical Research Letters, 2003, 30(12): 1629.
28 XU Y, GAO X, GIORGI F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections[J]. Climate Research, 2010, 41: 61-81.
29 MIAO C Y, DUAN Q Y, SUN Q H, et al. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia[J]. Environmental Research Letters, 2014, 9(5): 055007.
30 TEGEGNE G, KIM Y O, LEE J K. Spatiotemporal reliability ensemble averaging of multimodel simulations[J]. Geophysical Research Letters, 2019, 46(21): 12 321-12 330.
31 WU Jia, GAO Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 102-1 111.
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1 102-1 111.
32 O'NEILL B C, TEBALDI C, van VUUREN D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3 461-3 482.
33 RIAHI K, van VUUREN D P, KRIEGLER E, et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42: 153-168.
34 ZHANG X B, ALEXANDER L, HEGERL G C, et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. WIREs Climate Change, 2011, 2(6): 851-870.
35 JIANG Z H, LI W, XU J J, et al. Extreme precipitation indices over China in CMIP5 models. part I: model evaluation[J]. Journal of Climate, 2015, 28(21): 8 603-8 619.
36 HU Ting, SUN Ying, ZHANG Xuebin. Temperature and precipitation projection at 1.5 and 2 ℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26): 3 098-3 111.
胡婷, 孙颖, 张学斌. 全球1.5和2 ℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3 098-3 111.
37 FLYNN C M, MAURITSEN T. On the climate sensitivity and historical warming evolution in recent coupled model ensembles[J]. Atmospheric Chemistry and Physics, 2020, 20(13): 7 829-7 842.
38 ZHOU Tianjun, CHEN Xiaolong. The uncertainty in the 2 ℃ warming threshold issue as related to climate sensitivity and climate feedback[J]. Acta Meteorologica Sinica, 2015, 73(4): 624-634.
周天军, 陈晓龙. 气候敏感度、气候反馈过程与2 ℃升温阈值的不确定性问题[J]. 气象学报, 2015, 73(4): 624-634.
[1] 贾明瑞, 张晋韬, 王芳. 《巴黎协定》未来气候情景下“一带一路”沿线区域气候舒适度预估[J]. 地球科学进展, 2022, 37(5): 505-518.
[2] 唐明秀, 孙劭, 朱秀芳, 张世喆, 徐昆, 郭春华. 基于 CMIP6的中国未来暴雨危险性变化评估[J]. 地球科学进展, 2022, 37(5): 519-534.
[3] 刘凯,聂格格,张森. 中国 19512018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1113-1126.
[4] 王会军. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 2010, 25(6): 563-570.
[5] 钱维宏,符娇兰,张玮玮,林祥. 近40年中国平均气候与极值气候变化的概述[J]. 地球科学进展, 2007, 22(7): 673-684.
[6] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.
阅读次数
全文


摘要