地球科学进展 ›› 2022, Vol. 37 ›› Issue (6): 600 -611. doi: 10.11867/j.issn.1001-8166.2022.015

研究论文 上一篇    下一篇

煤显微组分对煤石墨化作用的影响
汪昱辉( ), 姚素平( )   
  1. 南京大学地球科学与工程学院,表生地球化学教育部重点实验室,江苏 南京 210023
  • 收稿日期:2021-12-12 修回日期:2022-02-05 出版日期:2022-06-10
  • 通讯作者: 姚素平 E-mail:hui981119@qq.com;spyao@nju.edu.cn
  • 基金资助:
    国家自然科学基金项目“显微组分热演化过程中的压力效应与作用机制”(42072152)

Influence of Coal Macerals on Graphitization

Yuhui WANG( ), Suping YAO( )   

  1. School of Earth Science and Engineering,Nanjing University,Key Laboratory of Surficial Geochemistry,Ministry of Education,Nanjing 210023,China
  • Received:2021-12-12 Revised:2022-02-05 Online:2022-06-10 Published:2022-06-20
  • Contact: Suping YAO E-mail:hui981119@qq.com;spyao@nju.edu.cn
  • About author:WANG Yuhui (1998-), male, Maanshan City, Anhui Province, Master student. Research area include the graphitization of coal macerals. E-mail: hui981119@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Pressure effect and mechanism in thermal evolution of macerals”(42072152)

煤系石墨是在岩浆接触热变质及构造变质作用下形成的煤系非金属矿产。煤系石墨与晶质石墨相比,具有品位高、易开发的特点,将成为高技术产业和新能源领域的重要原材料。综合概述了煤石墨化作用模式、影响因素以及煤显微组分对煤石墨化的影响,分析了煤石墨化研究的主要问题和发展趋势。目前,煤的物理化学结构和煤系石墨的相关研究已取得了较为显著的进展,但煤石墨化作用机制仍存在许多问题亟待解决。大量的研究集中在煤石墨化的外部地质因素,如温度、压力和介质条件对煤石墨化的控制作用,而对煤显微组分在煤石墨化过程中的作用研究相对较少。由于镜质组、惰质组和壳质组的芳环缩合程度不同,各种显微组分具有不同的芳氢和侧链取代基,从而对煤中芳香结构的演化和纳米结构的形成产生差异影响,造成煤石墨化作用效果和作用机制的复杂性。因此,充分认识显微组分对煤石墨化作用的影响可能是揭示煤石墨化机制的重要途径之一。

Coaly graphite is a nonmetallic mineral in coal measures formed by magmatic thermal contact metamorphism and tectonic metamorphism. Compared with crystalline graphite, coal graphite has the characteristics of high grade and easy development. It will become an important raw material in high-tech industries and new energy fields in the future. By summarizing and analyzing the mode of coal graphitization, the influencing factors and the influence of coal macerals on coal graphitization were identified. The main problems and development trends in coal graphitization research were analyzed. At present, research on the physical and chemical structures of coal and coal graphite has made remarkable progress, although there are still many problems that need to be addressed in coal graphitization. Many studies have focused on the external geological factors of coal graphitization, such as temperature, pressure, and medium conditions, in the control of coal graphitization. The role of coal macerals in coal graphitization has been relatively less studied. There are different condensation degrees of aromatic rings or different aromatic hydrogen and side-chain substituent contents among vitrinite, inertinite, and exinite, which affect the evolution of aromatic structures and the formation of nanostructures in coal, thus causing complexity in the coal graphitization effect and mechanism. Therefore, a full understanding of the influence of macerals on coal graphitization may be an important way to reveal the mechanism of coal graphitization.

中图分类号: 

图1 2类不同的富碳材料 8
(a)可石墨化碳结构示意图; (b)不可石墨化碳结构示意图 7
Fig. 1 Two different types of carbon-rich materials 8
(a) Schematic diagram of graphitizable carbon structure; (b) Schematic diagram of non-graphitizable carbon structure 7
图2 自然演化和热模拟煤中的洋葱状结构
(a)自然演化高成熟度煤样中的洋葱状结构 17 ; (b)和(c)实验热模拟煤样中洋葱状结构 18
Fig. 2 Onion-like structure in naturally evolued and thermally simulaed coal
(a) Onion-like structure in natural evolution high maturity coal samples 17 ; (b) and (c) Experimental thermal simulation of onion-like structure in coal samples 18
图3 芳香型分子的几何排列
(a)六苯并苯三聚体; (b)六苯并苯的部分晶体结构; (c)4个芳族分子(基本结构单元极限尺寸)的情况 19
Fig. 3 Geometric arrangement of aromatic molecules
(a) Coronene trimer; (b) Part of coronene crystal structure; (c) Case of four aromatic molecules (basic structural unit limit size) 19
图4 石墨化过程中各演化阶段模型图 20
BSU: 基本结构单元
Fig. 4 Model diagram of each evolution stage in graphitization process 20
BSU: Basic Structural Units
图5 BSU拼叠方式示意图
(a)拼接; (b)叠合; (c)拼叠 (a为简单拼叠; b为复杂拼叠) 22
Fig. 5 Schematic diagram of BSU splicing mode
(a) Splicing; (b) Overlapping; (c) Splicing (a is simple splicing, b is a complex mosaic) 22
图6 不同应力下微观结构变化 27
MOD: 分子取向畴; BSU: 基本结构单元
Fig. 6 Microstructure changes under different stress conditions 27
MOD: Molecular Orientation Domain; BSU: Basic Structural Units
图7 煤中分子间孔隙AFM图像
(a)煤大分子团呈松散的栅格排列结构, 绿色突出区域为煤大分子团的纳米线, 相邻纳米线间的暗的位置红色区域为分子间孔隙, 气煤; (b)煤大分子团紧密堆积的栅状结构特征, 无烟煤; (c)呈松散的栅格排列煤大分子团结构三维图像; (d)紧密堆积的栅状结构特征煤大分子团三维图像 56
Fig. 7 AFM image of molecular pores in coal
(a) Coal macromolecules are arranged as a loose grid structure, the green protrusion of the surface is a nanowire of coal macromolecules, the dark red depression between adjacent nanowires is an intermolecular pore, gas coal; (b) The grid array structural features of the closely packed accumulation of coal macromolecules, anthracite; (c) The three-dimensional image of coal macromolecular cluster structure is arranged with loose grids; (d) The three-dimensional image of coal macromolecule clusters characterized by tightly packed grid structure 56
图8 扫描电镜下温度升高煤孔隙的变化 18
Fig. 8 Changes of coal porosity with increasing temperature under scanning electron microscope 18
图9 煤样芳香层间距(d002)和芳香环尺寸变化与煤样中介孔数变化随热模拟温度升高的关系对照(数据来源于参考文献[ 18 ])
Fig. 9 Comparison of the relationship between the change of aromatic layer spacingd002and aromatic ring size in coal samples and the change of mesopore number in coal samples with the increase of thermal simulation temperaturedata from reference 18 ])
图10 不同温度下石墨化碳微观结构示意图 64
Fig. 10 Schematic diagram of graphitized carbon microstructure at different temperatures 64
1 CAO Daiyong, ZHANG He, DONG Yeji, et al. Research status and key orientation of coal-based graphite mineral geology[J]. Earth Science Frontiers, 2017, 24(5): 317-327.
曹代勇, 张鹤, 董业绩, 等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘, 2017, 24(5): 317-327.
2 CAO Daiyong, WANG Lu, LIU Zhifei, et al. The research status and prospect of coal-based graphite in China[J]. Coal Geology & Exploration, 2020, 48(1): 1-11.
曹代勇, 王路, 刘志飞, 等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探, 2020, 48(1): 1-11.
3 Ministry of Natural Resources, People’s Republic of China. China mineral resources (2019) [R]. Beijing: Geological Publishing House, 2019.
中华人民共和国自然资源部. 中国矿产资源报告(2019)[R]. 北京: 地质出版社, 2019.
4 WANG Lu, DONG Yeji, ZHANG He, et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology, 2018, 3(1): 9-19.
王路, 董业绩, 张鹤, 等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报, 2018, 3(1): 9-19.
5 HUANG Difan, QIN Kuangzong, WANG Tieguan. Formation and hydrocarbon generation mechanism of coal-formed oil [M]. Beijing: Petroleum Industry Press, 1995.
黄第藩, 秦匡宗, 王铁冠. 煤成油的形成和成烃机理[M]. 北京:石油工业出版社, 1995.
6 CHEN Jianping, HUANG Difan, LI Jinchao, et al. The petroleum generation model for organic matterfrom Jurassic coal measure, Northwest China[J]. Geochimica, 1999, 28(4): 327-339.
陈建平, 黄第藩, 李晋超, 等. 西北地区侏罗纪煤系有机质成烃模式[J]. 地球化学, 1999, 28(4): 327-339.
7 YAO Suping, ZHANG Jingrong, JIN Kuili. Studying individual macerals using FTIR microspectroscopy and fluorescence spectroscopy on the thermal evolution[J]. Acta Sedimentologica Sinica, 1996, 14(3): 1-10.
姚素平, 张景荣, 金奎励. 用显微荧光和显微傅立叶红外光谱研究显微组分的热演化规律[J]. 沉积学报, 1996, 14(3): 1-10.
8 FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1951, 209(1 097): 196-218.
9 ERGUN Sabri. X-ray studies of coals and carbonaceous materials[Z]. Technical Report Archive & Image Library, 1968.
10 BONIJOLY M, OBERLIN M, OBERLIN A. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology, 1982, 1(4): 283-312.
11 BUSTIN R M, ROSS J V, ROUZAUD J N. Mechanisms of graphite formation from kerogen: experimental evidence[J]. International Journal of Coal Geology, 1995, 28(1): 1-36.
12 DEURBERGUE A, OBERLIN A, OH J H, et al. Graphitization of Korean Anthracites as studied by transmission electron microscopy and X-ray diffraction[J]. International Journal of Coal Geology, 1987, 8(4): 375-393.
13 GREW E S. Carbonaceous material in some metamorphic rocks of new England and other areas[J]. The Journal of Geology, 1974, 82(1): 50-73.
14 LANDIS C A. Graphitization of dispersed carbonaceous material in metamorphic rocks[J]. Contributions to Mineralogy and Petrology, 1971, 30(1): 34-45.
15 BUSECK P R, HUANG B J. Conversion of carbonaceous material to graphite during metamorphism[J]. Geochimica et Cosmochimica Acta, 1985, 49(10): 2 003-2 016.
16 SHARMA A, KYOTANI T, TOMITA A. Direct observation of layered structure of coals by a transmission electron microscope[J]. Energy & Fuels, 2000, 14(2): 515-516.
17 BEYSSAC O, GOFFÉ B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871.
18 LIU Yang. Structural evolution and hydrocarbon generation mechanism of hydrogen-rich coal [D]. Nanjing: Nanjing University, 2019.
刘阳. 富氢煤的结构演化及成烃机理[D]. 南京: 南京大学,2019.
19 OBERLIN A, BONNAMY S. A realistic approach to disordered carbons[J]. Chemistry and Physics of Carbon, 2012, 31: 1-83.
20 OBERLIN A. Carbonization and graphitization[J]. Carbon, 1984, 22(6): 521-541.
21 ZHENG Zhe. Hrtem studies of microstructures of coal-based graphite[J]. Acta Mineralogica Sinica, 1991, 11(3): 214-218, 291.
郑辙. 煤基石墨微结构的高分辨电镜研究[J]. 矿物学报, 1991, 11(3): 214-218, 291.
22 QIN Yong. Micropetrological characteristics and structural evolution of high-rank coal in China [M]. Xuzhou: China University of Mining and Technology Press, 1994.
秦勇.中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社, 1994.
23 SUCHY V, FREY M, WOLF M. Vitrinite reflectance and shear-induced graphitization in orogenic belts: a case study from the Kandersteg area, Helvetic Alps, Switzerland[J]. International Journal of Coal Geology, 1997, 34(1/2): 1-20.
24 RANTITSCH G, GROGGER W, TEICHERT C, et al. Conversion of carbonaceous material to graphite within the greywacke zone of the eastern Alps[J]. International Journal of Earth Sciences, 2004, 93(6): 959-973.
25 BAI Junren. Coal quality [M]. Beijing: Geological Publishing House, 1989.
白浚仁. 煤质学[M]. 北京:地质出版社, 1989.
26 BEYSSAC O, ROUZAUD J N, GOFFÉ B, et al. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study[J]. Contributions to Mineralogy and Petrology, 2002, 143(1): 19-31.
27 BUSTIN R M, ROUZAUD J N, ROSS J V. Natural graphitization of anthracite: experimental considerations[J]. Carbon, 1995, 33(5): 679-691.
28 JIANG Bo, LI Ming, QU Zhenghui, et al. Current research status and prospect of tectonically deformed coal[J]. Advances in Earth Science, 2016, 31(4): 335-346.
姜波, 李明, 屈争辉, 等. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
29 NOVER G, STOLL J B, von der GÖNNA J. Promotion of graphite formation by tectonic stress—a laboratory experiment[J]. Geophysical Journal International, 2005, 160(3): 1 059-1 067.
30 INAGAKI M. Natural graphite-experimental evidence for its formation and novel applications[J]. Earth Science Frontiers, 2005, 12(1): 171-181.
31 GONZÁLEZ D, MONTES-MORÁN M A, GARCIA A B. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from Anthracites [J]. Energy & Fuels, 2005, 19(1): 263-269.
32 ZHANG Xiaoqian. Study on catalytic graphitization of Shenfu coal and its coal components [D]. Xi’an: Xi’an University of Science and Technology, 2014.
张晓欠.神府煤及其煤岩组分催化石墨化研究[D]. 西安: 西安科技大学, 2014.
33 ANDRÉSEN J M, BURGESS C E, PAPPANO P J, et al. New directions for non-fuel uses of Anthracites[J]. Fuel Processing Technology, 2004, 85(12): 1 373-1 392.
34 LUO Yunfei. Study on macromolecular structure of coal— structure of inertinite in coal and occurrence form of oxygen in coal[D]. Beijing: China Coal Research Institute, 2002.
罗陨飞. 煤的大分子结构研究——煤中惰质组结构及煤中氧的赋存形态[D]. 北京: 煤炭科学研究总院, 2002.
35 NIEKERK D V, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89(1): 73-82.
36 DIESSEL C F K, BROTHERS R N, BLACK P M. Coalification and graphitization in high-pressure schists in new Caledonia[J]. Contributions to Mineralogy and Petrology, 1978, 68(1): 63-78.
37 TEICHMÜLLER M. Zur petrographie and genese von naturkoksen im floz prasident helene der zeche Friedrich heinrich Bei kamp-lintfort (linker niederrhein) [Z]. 1973.
38 ATRIA J V, ZENG S, RUSINKO F, et al. Novel approach to the production of graphite from anthracite[Z]. Washington, D.C. (United States): American Chemical Society, 1994.
39 BLANCHE C, ROUZAUD J N, DUMAS D. New data on anthracite graphitizibility[C]// Porceeding of 22nd Biennial conference, extended abstracts, American Carbon Society, 1995: 495-694.
40 COHAUT N, BLANCHE C, DUMAS D, et al. A small angle X-ray scattering study on the porosity of Anthracites[J]. Carbon, 2000, 38(9): 1 391-1 400.
41 LI Kuo. Investigation on the structural ordering of natural coaly graphite from Xinhua, Hunan Province, China[D]. Beijing: China University of Mining & Technology (Beijing), 2019.
李阔. 湖南新化煤系石墨结构有序化过程研究[D]. 北京: 中国矿业大学(北京), 2019.
42 LI Jiuqing. Composition and optical property evolution of macerals in meta-anthracite from Yongan, Fujian, China[D]. Xuzhou: China University of Mining and Technology, 2019.
李久庆. 永安超无烟煤显微组分及其光性演化[D]. 徐州: 中国矿业大学, 2019.
43 WANG C, CAO Y, PENG G D, et al. Strain-induced graphitization mechanism of coal-based graphite from lutang, Hunan Province, China[J]. Minerals, 2019, 9(10): 617.
44 CAO Daiyong, WEI Yingchun, WANG Anmin, et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: research status and prospect[J]. Coal Geology & Exploration, 2021, 49(1): 12-20.
曹代勇, 魏迎春, 王安民, 等. 显微组分大分子结构演化差异性及其动力学机制: 研究进展与展望[J]. 煤田地质与勘探, 2021, 49(1): 12-20.
45 MAO Ning. Reactive characteristics of the pyrolysis and chemical looping combustion for different macerals of a coking coal from Ningxia[D]. Yinchuan: Ningxia University, 2020.
毛宁. 一种宁夏焦煤不同显微组分的热解和化学链燃烧反应特性研究[D]. 银川: 宁夏大学, 2020.
46 LI K, RIMMER S M, LIU Q F. Geochemical and petrographic analysis of graphitized coals from central Hunan, China[J]. International Journal of Coal Geology, 2018, 195(1): 267-279.
47 PRESSWOOD S M, RIMMER S M, ANDERSON K B, et al. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) Coal Seam, Illinois Basin[J]. International Journal of Coal Geology, 2016, 165(1): 243-256.
48 WANG L, QIN R F, LI Y, et al. On the difference of graphitization behavior between vitrinite- and inertinite-rich Anthracites during heat treatment[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-13. DOI:10.1080/15567036.2019.1656681 .
49 TAO S Y, WANG Y C, SHI D, et al. Facile synthesis of highly graphitized porous carbon monoliths with a balance on crystallization and pore-structure[J]. Journal of Materials Chemistry A, 2014, 32 (2): 127 85-12 791.
50 KIM T W, PARK I S, RYOO R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls[J]. Angewandte Chemie (International ed. in English), 2003, 42(36): 4 375-4 379.
51 SONG Y, JIANG B, LI M, et al. A review on pore-fractures in tectonically deformed coals[J]. Fuel, 2020, 278(15): 118248.
52 WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176.
吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176.
53 MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30.
马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30.
54 ZHAO Yongchao, NI Xiaoming, LI Quanzhong. Study on pore sturcture characteristics of different macerals in coal[J]. Safety in Coal Mines, 2018, 49(1): 1-4, 8.
赵永超, 倪小明, 李全中. 煤中不同显微组分孔隙结构特征研究[J]. 煤矿安全, 2018, 49(1): 1-4, 8.
55 QIN Yong, JIANG Bo, WANG Chao, et al. Electron paramagnetic resonance studies of high rank coals in China: a reference to makingup and its mechanism of macromolecular basic structural units in coals[J]. Journal of China University of Mining & Technology, 1997, 26(2): 10-14.
秦勇, 姜波, 王超, 等. 中国高煤级煤的电子顺磁共振特征: 兼论煤中大分子基本结构单元的“拼叠作用”及其机理[J]. 中国矿业大学学报, 1997, 26(2): 10-14.
56 YAO S P, JIAO K, ZHANG K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(25): 2 706-2 712.
57 YAO Suping, JIAO Kun, LI Miaochun, et al. Advances in research of coal and kerogen nanostructure[J]. Advances in Earth Science, 2012, 27(4): 367-378.
姚素平, 焦堃, 李苗春, 等. 煤和干酪根纳米结构的研究进展[J]. 地球科学进展, 2012, 27(4): 367-378.
58 WANG S Q, CHEN H, MA W, et al. Structural transformations of coal components upon heat treatment and explanation on their abnormal thermal behaviors[J]. Energy & Fuels, 2017, 31(11): 11 587-11 593.
59 WANG Lijie, SUN Fei, LIU Dongdong, et al. Synergistic effect of FeCl3 on pore-structure and crystallization of Zhundong coal-based activated carbons[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1 777-1 783.
王丽杰, 孙飞, 刘冬冬, 等. FeCl3对准东煤基多孔碳孔隙结构与石墨化协同调控[J]. 工程热物理学报, 2017, 38(8): 1 777-1 783.
60 HOU Jinxiu. Coal structure and it’s charicateristic of adsorption and emission[D]. Jiaozuo: Henan Polytechnic University, 2009.
侯锦秀. 煤结构与煤的瓦斯吸附放散特性[D]. 焦作: 河南理工大学, 2009.
61 YANG Quanhong, ZHENG Jingtang, WANG Maozhang, et al. Nano-space and surface micro-structures of microporous carbon[J]. Chinese Journal of Materials Research, 2000, 14(2): 113-122.
杨全红, 郑经堂, 王茂章, 等. 微孔炭的纳米孔结构和表面微结构[J]. 材料研究学报, 2000, 14(2): 113-122.
62 HOU Jinxiu, WANG Baojun, ZHANG Yugui, et al. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. Coal Geology & Exploration, 2017, 45(5): 75-81.
侯锦秀, 王宝俊, 张玉贵, 等. 不同煤级煤的微孔介孔演化特征及其成因[J]. 煤田地质与勘探, 2017, 45(5): 75-81.
63 ZHAO Y L, FENG Y H, ZHANG X X. Selective adsorption and selective transport diffusion of CO2-CH4 binary mixture in coal ultramicropores[J]. Environmental Science & Technology, 2016, 50(17): 9 380-9 389.
64 WU Gangping, LI Denghua, YANG Yu, et al. Microvoid evolution in carbon fibers during graphitization for the preparation of carbon/carbon composites[J]. New Carbon Materials, 2014, 29(1):41-46.
吴刚平, 李登华, 杨禹, 等. 炭纤维中微孔在模拟复合材料石墨化过程中的演变[J]. 新型炭材料, 2014, 29(1):41-46.
65 SAKUROVS R, LYNCH L J, MAHER T P, et al. Molecular mobility during pyrolysis of Australian bituminous coals[J]. Energy & Fuels, 1987, 1(2): 167-172.
66 IGLESIAS M J, JIMÉNEZ A, del Rı́O J C, et al. Molecular characterisation of vitrinite in relation to natural hydrogen enrichment and depositional environment[J]. Organic Geochemistry, 2000, 31(12): 1 285-1 299.
67 OUCHI K, ITOH S, MAKABE M, et al. Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties[J]. Fuel, 1989, 68(6): 735-740.
68 BASSETT W A, WU T C, CHOU I M, et al. The Hydrothermal Diamond Anvil Cell (HDAC) and its applications [J]. The Geochemical Society, 1996(5): 261-272.
[1] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[2] 姚素平. 早期煤化作用机制与有机质早期成烃演化[J]. 地球科学进展, 2002, 17(1): 63-68.
[3] 胡社荣,潘响亮,方家虎. 中国煤成油研究进展和展望[J]. 地球科学进展, 1996, 11(3): 265-269.
阅读次数
全文


摘要