| 1 | CAO Daiyong, ZHANG He, DONG Yeji, et al. Research status and key orientation of coal-based graphite mineral geology[J]. Earth Science Frontiers, 2017, 24(5): 317-327. | 
																													
																						|  | 曹代勇, 张鹤, 董业绩, 等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘, 2017, 24(5): 317-327. | 
																													
																						| 2 | CAO Daiyong, WANG Lu, LIU Zhifei, et al. The research status and prospect of coal-based graphite in China[J]. Coal Geology & Exploration, 2020, 48(1): 1-11. | 
																													
																						|  | 曹代勇, 王路, 刘志飞, 等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探, 2020, 48(1): 1-11. | 
																													
																						| 3 | Ministry of Natural Resources, People’s Republic of China. China mineral resources (2019) [R]. Beijing: Geological Publishing House, 2019. | 
																													
																						|  | 中华人民共和国自然资源部. 中国矿产资源报告(2019)[R]. 北京: 地质出版社, 2019. | 
																													
																						| 4 | WANG Lu, DONG Yeji, ZHANG He, et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology, 2018, 3(1): 9-19. | 
																													
																						|  | 王路, 董业绩, 张鹤, 等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报, 2018, 3(1): 9-19. | 
																													
																						| 5 | HUANG Difan, QIN Kuangzong, WANG Tieguan. Formation and hydrocarbon generation mechanism of coal-formed oil [M]. Beijing: Petroleum Industry Press, 1995. | 
																													
																						|  | 黄第藩, 秦匡宗, 王铁冠. 煤成油的形成和成烃机理[M]. 北京:石油工业出版社, 1995. | 
																													
																						| 6 | CHEN Jianping, HUANG Difan, LI Jinchao, et al. The petroleum generation model for organic matterfrom Jurassic coal measure, Northwest China[J]. Geochimica, 1999, 28(4): 327-339. | 
																													
																						|  | 陈建平, 黄第藩, 李晋超, 等. 西北地区侏罗纪煤系有机质成烃模式[J]. 地球化学, 1999, 28(4): 327-339. | 
																													
																						| 7 | YAO Suping, ZHANG Jingrong, JIN Kuili. Studying individual macerals using FTIR microspectroscopy and fluorescence spectroscopy on the thermal evolution[J]. Acta Sedimentologica Sinica, 1996, 14(3): 1-10. | 
																													
																						|  | 姚素平, 张景荣, 金奎励. 用显微荧光和显微傅立叶红外光谱研究显微组分的热演化规律[J]. 沉积学报, 1996, 14(3): 1-10. | 
																													
																						| 8 | FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1951, 209(1 097): 196-218. | 
																													
																						| 9 | ERGUN Sabri. X-ray studies of coals and carbonaceous materials[Z]. Technical Report Archive & Image Library, 1968. | 
																													
																						| 10 | BONIJOLY M, OBERLIN M, OBERLIN A. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology, 1982, 1(4): 283-312. | 
																													
																						| 11 | BUSTIN R M, ROSS J V, ROUZAUD J N. Mechanisms of graphite formation from kerogen: experimental evidence[J]. International Journal of Coal Geology, 1995, 28(1): 1-36. | 
																													
																						| 12 | DEURBERGUE A, OBERLIN A, OH J H, et al. Graphitization of Korean Anthracites as studied by transmission electron microscopy and X-ray diffraction[J]. International Journal of Coal Geology, 1987, 8(4): 375-393. | 
																													
																						| 13 | GREW E S. Carbonaceous material in some metamorphic rocks of new England and other areas[J]. The Journal of Geology, 1974, 82(1): 50-73. | 
																													
																						| 14 | LANDIS C A. Graphitization of dispersed carbonaceous material in metamorphic rocks[J]. Contributions to Mineralogy and Petrology, 1971, 30(1): 34-45. | 
																													
																						| 15 | BUSECK P R, HUANG B J. Conversion of carbonaceous material to graphite during metamorphism[J]. Geochimica et Cosmochimica Acta, 1985, 49(10): 2 003-2 016. | 
																													
																						| 16 | SHARMA A, KYOTANI T, TOMITA A. Direct observation of layered structure of coals by a transmission electron microscope[J]. Energy & Fuels, 2000, 14(2): 515-516. | 
																													
																						| 17 | BEYSSAC O, GOFFÉ B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871. | 
																													
																						| 18 | LIU Yang. Structural evolution and hydrocarbon generation mechanism of hydrogen-rich coal [D]. Nanjing: Nanjing University, 2019. | 
																													
																						|  | 刘阳. 富氢煤的结构演化及成烃机理[D]. 南京: 南京大学,2019. | 
																													
																						| 19 | OBERLIN A, BONNAMY S. A realistic approach to disordered carbons[J]. Chemistry and Physics of Carbon, 2012, 31: 1-83. | 
																													
																						| 20 | OBERLIN A. Carbonization and graphitization[J]. Carbon, 1984, 22(6): 521-541. | 
																													
																						| 21 | ZHENG Zhe. Hrtem studies of microstructures of coal-based graphite[J]. Acta Mineralogica Sinica, 1991, 11(3): 214-218, 291. | 
																													
																						|  | 郑辙. 煤基石墨微结构的高分辨电镜研究[J]. 矿物学报, 1991, 11(3): 214-218, 291. | 
																													
																						| 22 | QIN Yong. Micropetrological characteristics and structural evolution of high-rank coal in China [M]. Xuzhou: China University of Mining and Technology Press, 1994. | 
																													
																						|  | 秦勇.中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社, 1994. | 
																													
																						| 23 | SUCHY V, FREY M, WOLF M. Vitrinite reflectance and shear-induced graphitization in orogenic belts: a case study from the Kandersteg area, Helvetic Alps, Switzerland[J]. International Journal of Coal Geology, 1997, 34(1/2): 1-20. | 
																													
																						| 24 | RANTITSCH G, GROGGER W, TEICHERT C, et al. Conversion of carbonaceous material to graphite within the greywacke zone of the eastern Alps[J]. International Journal of Earth Sciences, 2004, 93(6): 959-973. | 
																													
																						| 25 | BAI Junren. Coal quality [M]. Beijing: Geological Publishing House, 1989. | 
																													
																						|  | 白浚仁. 煤质学[M]. 北京:地质出版社, 1989. | 
																													
																						| 26 | BEYSSAC O, ROUZAUD J N, GOFFÉ B, et al. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study[J]. Contributions to Mineralogy and Petrology, 2002, 143(1): 19-31. | 
																													
																						| 27 | BUSTIN R M, ROUZAUD J N, ROSS J V. Natural graphitization of anthracite: experimental considerations[J]. Carbon, 1995, 33(5): 679-691. | 
																													
																						| 28 | JIANG Bo, LI Ming, QU Zhenghui, et al. Current research status and prospect of tectonically deformed coal[J]. Advances in Earth Science, 2016, 31(4): 335-346. | 
																													
																						|  | 姜波, 李明, 屈争辉, 等. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346. | 
																													
																						| 29 | NOVER G, STOLL J B, von der GÖNNA J. Promotion of graphite formation by tectonic stress—a laboratory experiment[J]. Geophysical Journal International, 2005, 160(3): 1 059-1 067. | 
																													
																						| 30 | INAGAKI M. Natural graphite-experimental evidence for its formation and novel applications[J]. Earth Science Frontiers, 2005, 12(1): 171-181. | 
																													
																						| 31 | GONZÁLEZ D, MONTES-MORÁN M A, GARCIA A B. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from Anthracites [J]. Energy & Fuels, 2005, 19(1): 263-269. | 
																													
																						| 32 | ZHANG Xiaoqian. Study on catalytic graphitization of Shenfu coal and its coal components [D]. Xi’an: Xi’an University of Science and Technology, 2014. | 
																													
																						|  | 张晓欠.神府煤及其煤岩组分催化石墨化研究[D]. 西安: 西安科技大学, 2014. | 
																													
																						| 33 | ANDRÉSEN J M, BURGESS C E, PAPPANO P J, et al. New directions for non-fuel uses of Anthracites[J]. Fuel Processing Technology, 2004, 85(12): 1 373-1 392. | 
																													
																						| 34 | LUO Yunfei. Study on macromolecular structure of coal— structure of inertinite in coal and occurrence form of oxygen in coal[D]. Beijing: China Coal Research Institute, 2002. | 
																													
																						|  | 罗陨飞. 煤的大分子结构研究——煤中惰质组结构及煤中氧的赋存形态[D]. 北京: 煤炭科学研究总院, 2002. | 
																													
																						| 35 | NIEKERK D V, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89(1): 73-82. | 
																													
																						| 36 | DIESSEL C F K, BROTHERS R N, BLACK P M. Coalification and graphitization in high-pressure schists in new Caledonia[J]. Contributions to Mineralogy and Petrology, 1978, 68(1): 63-78. | 
																													
																						| 37 | TEICHMÜLLER M. Zur petrographie and genese von naturkoksen im floz prasident helene der zeche Friedrich heinrich Bei kamp-lintfort (linker niederrhein) [Z]. 1973. | 
																													
																						| 38 | ATRIA J V, ZENG S, RUSINKO F, et al. Novel approach to the production of graphite from anthracite[Z]. Washington, D.C. (United States): American Chemical Society, 1994. | 
																													
																						| 39 | BLANCHE C, ROUZAUD J N, DUMAS D. New data on anthracite graphitizibility[C]// Porceeding of 22nd Biennial conference, extended abstracts, American Carbon Society, 1995: 495-694. | 
																													
																						| 40 | COHAUT N, BLANCHE C, DUMAS D, et al. A small angle X-ray scattering study on the porosity of Anthracites[J]. Carbon, 2000, 38(9): 1 391-1 400. | 
																													
																						| 41 | LI Kuo. Investigation on the structural ordering of natural coaly graphite from Xinhua, Hunan Province, China[D]. Beijing: China University of Mining & Technology (Beijing), 2019. | 
																													
																						|  | 李阔. 湖南新化煤系石墨结构有序化过程研究[D]. 北京: 中国矿业大学(北京), 2019. | 
																													
																						| 42 | LI Jiuqing. Composition and optical property evolution of macerals in meta-anthracite from Yongan, Fujian, China[D]. Xuzhou: China University of Mining and Technology, 2019. | 
																													
																						|  | 李久庆. 永安超无烟煤显微组分及其光性演化[D]. 徐州: 中国矿业大学, 2019. | 
																													
																						| 43 | WANG C, CAO Y, PENG G D, et al. Strain-induced graphitization mechanism of coal-based graphite from lutang, Hunan Province, China[J]. Minerals, 2019, 9(10): 617. | 
																													
																						| 44 | CAO Daiyong, WEI Yingchun, WANG Anmin, et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: research status and prospect[J]. Coal Geology & Exploration, 2021, 49(1): 12-20. | 
																													
																						|  | 曹代勇, 魏迎春, 王安民, 等. 显微组分大分子结构演化差异性及其动力学机制: 研究进展与展望[J]. 煤田地质与勘探, 2021, 49(1): 12-20. | 
																													
																						| 45 | MAO Ning. Reactive characteristics of the pyrolysis and chemical looping combustion for different macerals of a coking coal from Ningxia[D]. Yinchuan: Ningxia University, 2020. | 
																													
																						|  | 毛宁. 一种宁夏焦煤不同显微组分的热解和化学链燃烧反应特性研究[D]. 银川: 宁夏大学, 2020. | 
																													
																						| 46 | LI K, RIMMER S M, LIU Q F. Geochemical and petrographic analysis of graphitized coals from central Hunan, China[J]. International Journal of Coal Geology, 2018, 195(1): 267-279. | 
																													
																						| 47 | PRESSWOOD S M, RIMMER S M, ANDERSON K B, et al. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (No. 6) Coal Seam, Illinois Basin[J]. International Journal of Coal Geology, 2016, 165(1): 243-256. | 
																													
																						| 48 | WANG L, QIN R F, LI Y, et al. On the difference of graphitization behavior between vitrinite- and inertinite-rich Anthracites during heat treatment[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-13. DOI:10.1080/15567036.2019.1656681 . | 
																													
																						| 49 | TAO S Y, WANG Y C, SHI D, et al. Facile synthesis of highly graphitized porous carbon monoliths with a balance on crystallization and pore-structure[J]. Journal of Materials Chemistry A, 2014, 32 (2): 127 85-12 791. | 
																													
																						| 50 | KIM T W, PARK I S, RYOO R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls[J]. Angewandte Chemie (International ed. in English), 2003, 42(36): 4 375-4 379. | 
																													
																						| 51 | SONG Y, JIANG B, LI M, et al. A review on pore-fractures in tectonically deformed coals[J]. Fuel, 2020, 278(15): 118248. | 
																													
																						| 52 | WU Songtao, ZHU Rukai, CUI Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176. | 
																													
																						|  | 吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. | 
																													
																						| 53 | MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. | 
																													
																						|  | 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. | 
																													
																						| 54 | ZHAO Yongchao, NI Xiaoming, LI Quanzhong. Study on pore sturcture characteristics of different macerals in coal[J]. Safety in Coal Mines, 2018, 49(1): 1-4, 8. | 
																													
																						|  | 赵永超, 倪小明, 李全中. 煤中不同显微组分孔隙结构特征研究[J]. 煤矿安全, 2018, 49(1): 1-4, 8. | 
																													
																						| 55 | QIN Yong, JIANG Bo, WANG Chao, et al. Electron paramagnetic resonance studies of high rank coals in China: a reference to makingup and its mechanism of macromolecular basic structural units in coals[J]. Journal of China University of Mining & Technology, 1997, 26(2): 10-14. | 
																													
																						|  | 秦勇, 姜波, 王超, 等. 中国高煤级煤的电子顺磁共振特征: 兼论煤中大分子基本结构单元的“拼叠作用”及其机理[J]. 中国矿业大学学报, 1997, 26(2): 10-14. | 
																													
																						| 56 | YAO S P, JIAO K, ZHANG K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(25): 2 706-2 712. | 
																													
																						| 57 | YAO Suping, JIAO Kun, LI Miaochun, et al. Advances in research of coal and kerogen nanostructure[J]. Advances in Earth Science, 2012, 27(4): 367-378. | 
																													
																						|  | 姚素平, 焦堃, 李苗春, 等. 煤和干酪根纳米结构的研究进展[J]. 地球科学进展, 2012, 27(4): 367-378. | 
																													
																						| 58 | WANG S Q, CHEN H, MA W, et al. Structural transformations of coal components upon heat treatment and explanation on their abnormal thermal behaviors[J]. Energy & Fuels, 2017, 31(11): 11 587-11 593. | 
																													
																						| 59 | WANG Lijie, SUN Fei, LIU Dongdong, et al. Synergistic effect of FeCl3 on pore-structure and crystallization of Zhundong coal-based activated carbons[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1 777-1 783. | 
																													
																						|  | 王丽杰, 孙飞, 刘冬冬, 等. FeCl3对准东煤基多孔碳孔隙结构与石墨化协同调控[J]. 工程热物理学报, 2017, 38(8): 1 777-1 783. | 
																													
																						| 60 | HOU Jinxiu. Coal structure and it’s charicateristic of adsorption and emission[D]. Jiaozuo: Henan Polytechnic University, 2009. | 
																													
																						|  | 侯锦秀. 煤结构与煤的瓦斯吸附放散特性[D]. 焦作: 河南理工大学, 2009. | 
																													
																						| 61 | YANG Quanhong, ZHENG Jingtang, WANG Maozhang, et al. Nano-space and surface micro-structures of microporous carbon[J]. Chinese Journal of Materials Research, 2000, 14(2): 113-122. | 
																													
																						|  | 杨全红, 郑经堂, 王茂章, 等. 微孔炭的纳米孔结构和表面微结构[J]. 材料研究学报, 2000, 14(2): 113-122. | 
																													
																						| 62 | HOU Jinxiu, WANG Baojun, ZHANG Yugui, et al. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. Coal Geology & Exploration, 2017, 45(5): 75-81. | 
																													
																						|  | 侯锦秀, 王宝俊, 张玉贵, 等. 不同煤级煤的微孔介孔演化特征及其成因[J]. 煤田地质与勘探, 2017, 45(5): 75-81. | 
																													
																						| 63 | ZHAO Y L, FENG Y H, ZHANG X X. Selective adsorption and selective transport diffusion of CO2-CH4 binary mixture in coal ultramicropores[J]. Environmental Science & Technology, 2016, 50(17): 9 380-9 389. | 
																													
																						| 64 | WU Gangping, LI Denghua, YANG Yu, et al. Microvoid evolution in carbon fibers during graphitization for the preparation of carbon/carbon composites[J]. New Carbon Materials, 2014, 29(1):41-46. | 
																													
																						|  | 吴刚平, 李登华, 杨禹, 等. 炭纤维中微孔在模拟复合材料石墨化过程中的演变[J]. 新型炭材料, 2014, 29(1):41-46. | 
																													
																						| 65 | SAKUROVS R, LYNCH L J, MAHER T P, et al. Molecular mobility during pyrolysis of Australian bituminous coals[J]. Energy & Fuels, 1987, 1(2): 167-172. | 
																													
																						| 66 | IGLESIAS M J, JIMÉNEZ A, del Rı́O J C, et al. Molecular characterisation of vitrinite in relation to natural hydrogen enrichment and depositional environment[J]. Organic Geochemistry, 2000, 31(12): 1 285-1 299. | 
																													
																						| 67 | OUCHI K, ITOH S, MAKABE M, et al. Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties[J]. Fuel, 1989, 68(6): 735-740. | 
																													
																						| 68 | BASSETT W A, WU T C, CHOU I M, et al. The Hydrothermal Diamond Anvil Cell (HDAC) and its applications [J]. The Geochemical Society, 1996(5): 261-272. |