地球科学进展 ›› 2022, Vol. 37 ›› Issue (6): 588 -599. doi: 10.11867/j.issn.1001-8166.2022.030

研究论文 上一篇    下一篇

基于拓扑多边形的海上船舶航迹关联方法
陈兆彤( ), 陈江平( ), 潘励   
  1. 武汉大学遥感信息工程学院,湖北 武汉 430079
  • 收稿日期:2021-10-18 修回日期:2022-03-07 出版日期:2022-06-10
  • 通讯作者: 陈江平 E-mail:2015301630022@whu.edu.cn;chenjp_lisa@163.com
  • 基金资助:
    国家重点研发计划项目“地理多元流网络结构测度与识别”(2017YFB0503604)

Correlation Method for Marine Vessel Track Based on Topological Polygon

Zhaotong CHEN( ), Jiangping CHEN( ), Li PAN   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2021-10-18 Revised:2022-03-07 Online:2022-06-10 Published:2022-06-20
  • Contact: Jiangping CHEN E-mail:2015301630022@whu.edu.cn;chenjp_lisa@163.com
  • About author:CHEN Zhaotong (1997-), male, Dongying City, Shandong Province, Master student. Research area include track analysis. E-mail: 2015301630022@whu.edu.cn
  • Supported by:
    the National Key Research and Development Program of China “Measurement and identification of geographically diverse flow network structure”(2017YFB0503604)

在组网雷达存在系统误差的情况下,为解决多雷达重叠监测区域海上船舶航迹关联困难的问题,提出了基于拓扑多边形的船舶航迹关联方法。选择2部雷达的各1条航迹进行逐时刻关联,首先分别筛选单时刻下2条航迹的周围目标,通过粗匹配算法使周围目标数一致;然后分别构建拓扑多边形,再构建相似度函数计算拓扑多边形的相似性作为该时刻2个待关联航迹的相似度值;最后计算各时刻相似度的均值并根据阈值判别航迹是否关联。在不同场景的仿真实验中的航迹关联平均正确率为90.87%,在雷达存在漏检等多种场景下性能优于对比算法,为实现雷达系统误差情况下的海上船舶航迹关联提供了有效且实用的途径。

To solve the difficulty in correlating marine vessel tracks in the overlapping monitoring area of multiple radars when the radar has a system error, a method of correlation based on topological polygons is proposed in this study. One track from each radar was selected to calculate the correlation at each time point. First, the surrounding targets of the two tracks were filtered and a matching algorithm was used to keep the number of surrounding targets consistent. Second, topological polygons were constructed and a similarity function was constructed to calculate the similarity of the topological polygons as the correlation value of the two tracks to be correlated. Finally, the mean value of the correlation degree at each moment was calculated and compared with a threshold value to determine whether the tracks were correlated. In the simulation experiment, the correct mean rate of the method in this study was 90.87%, and its performance was better than that of the comparison algorithm in a variety of scenarios, such as radar missed detection. This method provides an effective and practical way to realize the track correlation of marine vessels under the condition of radar system error.

中图分类号: 

图1 航迹关联算法流程
Fig. 1 Experimental procedure of track correlation algorithm
图2 构建拓扑多边形步骤示意图
Fig. 2 Schematic diagram of the steps of building a topology polygon
表1 实验数据说明
Table 1 Description of experimental data
图3 3个仿真场景的航迹示意图
(a)仿真场景一;(b)仿真场景二;(c)仿真场景三
Fig. 3 Track diagram of the three simulation scenes
(a) The first simulation scene; (b)The second simulation scene; (c)The third simulation scene
图4 周围目标数目不一致情况下的匹配方法效果图
Fig. 4 Effect of matching method in case of inconsistent surrounding targets
图5 各场景的部分拓扑多边形构建结果示意图
(a)仿真场景一;(b)仿真场景二;(c)仿真场景三
Fig. 5 Diagram of partial topological polygon construction results for each scene
(a) The first simulation scene; (b) The second simulation scene; (c) The third simulation scene
表2 拓扑多边形方法关联效率
Table 2 Correlation efficiency of topological polygon method
图6 不同阈值下拓扑多边形方法关联效率
Fig. 6 Correlation efficiency of topological polygon method under different thresholds
表3 对比方法的关联效率
Table 3 The correlation efficiency of the methods used for comparison
图7 拓扑多边形方法与对比方法的关联正确率
Fig. 7 Correlation accuracy of topological polygon method and the comparison method
图8 仿真场景三的航迹关联结果
(a)原始数据;(b)本文方法关联结果;(c)目标参照拓扑方法关联结果;(d)三角形拓扑方法关联结果
Fig. 8 Track correlation results of the third simulation scenes
(a) Original data; (b) Correlation result of this paper; (c) Correlation result of target reference topology method; (d) Correlation result of triangle topology method
1 XUE Cunjin, SU Fenzhen, HE Yawen. Process: a new view of geographical spatiotemporal dynamic analysis[J]. Advances in Earth Science, 2022, 37(1): 65-79.
薛存金, 苏奋振, 何亚文. 过程: 一种地理时空动态分析的新视角[J]. 地球科学进展, 2022, 37(1): 65-79.
2 ZHANG Yu, WANG Guohong, GUAN Chengbin, et al. Gray track correlation algorithm based on topology sequence method[J]. Electronics Optics & Control, 2013, 20(9): 1-5.
张宇, 王国宏, 关成斌, 等. 基于拓扑序列法的灰色航迹关联方法[J]. 电光与控制, 2013, 20(9): 1-5.
3 AZIZ A M. A new nearest-neighbor association approach based on fuzzy clustering[J]. Aerospace Science and Technology, 2013, 26(1): 87-97.
4 BAR-SHALOM Y, DAUM F, HUANG J. The probabilistic data association filter estimation in the presence of measurement origin uncertainty[J]. Control Systems IEEE, 2012,29(6):82-100.
5 AZIZ A M. A joint possibilistic data association technique for tracking multiple targets in a cluttered environment[J]. Information Sciences, 2014, 280: 239-260.
6 ZHU Jin, HU Bin, SHAO Hua. Trajectory similarity measure based on multiple movement features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1 703-1 710.
朱进, 胡斌, 邵华. 基于多重运动特征的轨迹相似性度量模型[J]. 武汉大学学报·信息科学版, 2017, 42(12): 1 703-1 710.
7 YANG Yuanxi, GAO Weiguang. Integrated navigation based on robust estimation outputs of Multi-sensor measurements and adaptive weights of dynamic model information[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 885-888.
杨元喜, 高为广. 基于多传感器观测信息抗差估计的自适应融合导航[J]. 武汉大学学报·信息科学版, 2004, 29(10): 885-888.
8 SONG Qiang, XIONG Wei, MA Qiang. Fuzzy track alignment-correlation algorithm based on target invariable information[J]. Systems Engineering and Electronics, 2011, 33(1): 190-195.
宋强, 熊伟, 马强. 基于目标不变信息量的模糊航迹对准关联算法[J]. 系统工程与电子技术, 2011, 33(1): 190-195.
9 ZHU H, WANG M L, YUEN K V, et al. Track-to-track association by coherent point drift[J]. IEEE Signal Processing Letters, 2017, 24(5): 643-647.
10 TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4): 449-453.
11 QI L, DONG K, LIU Y, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 269-276.
12 QI L, HE Y, DONG K, et al. Multi-radar anti-bias track association based on the reference topology feature[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 366-372.
13 SHI Yue, WANG Yue, WANG Shugang, et al. Fuzzy data association based on target topology of reference[J]. Journal of National University of Defense Technology, 2006, 28(4): 105-109.
石玥, 王钺, 王树刚, 等. 基于目标参照拓扑的模糊航迹关联方法[J]. 国防科技大学学报, 2006, 28(4): 105-109.
14 WU Zemin, REN Shujie, LIU Xi. Topology sequence based track correlation algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1 937-1 942.
吴泽民, 任姝婕, 刘熹. 基于拓扑序列法的航迹关联算法[J]. 航空学报, 2009, 30(10): 1 937-1 942.
15 DONG Kai, LIU Yu, WANG Haipeng. Grey track anti-bias association algorithm based on centroid topology of reference[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(4): 1 311-1 317.
董凯, 刘瑜, 王海鹏. 基于质心参照拓扑的灰色航迹抗差关联算法[J]. 吉林大学学报(工学版), 2015, 45(4): 1 311-1 317.
16 DONG Kai, WANG Haipeng, LIU Yu. Anti-bias track association algorithm based on topology statistical distance[J]. Journal of Electronics & Information Technology, 2015, 37(1): 50-55.
董凯, 王海鹏, 刘瑜. 基于拓扑统计距离的航迹抗差关联算法[J]. 电子与信息学报, 2015, 37(1): 50-55.
17 CUI Yaqi, XIONG Wei, GU Xiangqi. Anti-bias association algorithm for marine target track based on triangular stability[J]. Systems Engineering and Electronics, 2020, 42(10): 2 223-2 230.
崔亚奇, 熊伟, 顾祥岐. 基于三角稳定的海上目标航迹抗差关联算法[J]. 系统工程与电子技术, 2020, 42(10): 2 223-2 230.
18 CHEN Fei, JING Zhongliang, YAO Xiaodong. Time and spatial registration and target tracking for multiple airborne mobile platforms and sensors[J]. Control and Decision, 2001, 16(): 808-811, 821.
陈非, 敬忠良, 姚晓东. 空基多平台多传感器时间空间数据配准与目标跟踪[J]. 控制与决策, 2001, 16(): 808-811, 821.
19 WANG Baoshu, LI Fangshe. The research on multiple targets tracking based on the data fusion technique[J]. Journal of Xidian University, 1998, 25(3): 269-272.
王宝树, 李芳社. 基于数据融合技术的多目标跟踪算法研究[J]. 西安电子科技大学学报, 1998, 25(3): 269-272.
20 XIAO Jinli, PAN Zhengfeng, HUANG Shengxiang. Data synchronization method of GPS/INS integrated navigation system[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 715-717, 743.
肖进丽, 潘正风, 黄声享. GPS/INS组合导航系统数据同步处理方法研究[J]. 武汉大学学报·信息科学版, 2008, 33(7): 715-717, 743.
25 刘根旺, 刘永信, 纪永刚, 等. 基于模糊双门限的高频地波雷达与AIS目标航迹关联方法[J]. 系统工程与电子技术, 2016, 38(3): 557-562.
26 ZHANG Jingpeng, SUO Jidong. AIS and radar data correlation based on multi-factor fuzzy and gray correlation[J]. Microcomputer & Its Applications, 2015, 34(21): 75-77.
张景鹏, 索继东. 基于多因素模糊和灰色关联度综合的AIS与雷达数据关联[J]. 微型机与应用, 2015, 34(21): 75-77.
27 ZHENG Hao, Chula SA. Algorithm of multi-feature track association based on topology[J]. Command Information System and Technology, 2020, 11(5): 83-88.
郑浩, 萨出拉. 基于拓扑结构的多元特征航迹关联算法[J]. 指挥信息系统与技术, 2020, 11(5): 83-88.
28 HE You, PENG Yingning, LU Da. Fuzzy track correlation algorithms for multitarget and multisensor tracking[J]. Acta Electronica Sinica, 1998, 26(3): 15-19, 9.
何友, 彭应宁, 陆大. 多目标多传感器模糊双门限航迹相关算法[J]. 电子学报, 1998, 26(3): 15-19, 9.
21 LI Xin, CHENG Guodong, LU Ling. Comparison of spatial interpolation methods[J]. Advances in Earth Science, 2000, 15(3): 260-265.
李新, 程国栋, 卢玲. 空间内插方法比较[J]. 地球科学进展, 2000, 15(3): 260-265.
22 LIANG Kai, PAN Quan, SONG Guoming, et al. The study of multi-sensor time registration method[J]. Journal of Shaanxi University of Science & Technology, 2006, 24(6): 111-114.
梁凯, 潘泉, 宋国明, 等. 多传感器时间对准方法的研究[J]. 陕西科技大学学报, 2006, 24(6): 111-114.
23 WANG Chenxi. Research of radar and AIS data fusion algorithm[D]. Harbin: Harbin Engineering University, 2017.
王晨曦. 雷达与AIS数据融合算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
24 TIAN Guohao, XIE Lei, ZHU Tianquan, et al. Analysis of vessel encounter scenarios and traffic flow in complex inland waterway sections[J]. Journal of Wuhan University of Technology, 2021, 43(11): 27-34.
田国昊, 谢磊, 祝添权, 等. 内河复杂航段船舶会遇场景及交通流特征分析[J]. 武汉理工大学学报, 2021, 43(11): 27-34.
25 LIU Genwang, LIU Yongxin, JI Yonggang, et al. Track association for high-frequency surface wave radar and AIS based on fuzzy double threshold theory[J]. Systems Engineering and Electronics, 2016, 38(3): 557-562.
No related articles found!
阅读次数
全文


摘要