1 |
CARTWRIGHT I, CURRELL M J, CENDÓN D I, et al. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas[J]. Journal of Hydrology, 2020, 580. DOI:10.1016/j.jhydrol.2019.124247 .
|
2 |
MA H, YANG Q, YIN L, et al. Paleoclimate interpretation in northern Ordos Basin: evidence from isotope records of groundwater[J]. Quaternary International, 2018, 467: 204-209.
|
3 |
ZHAI Yuanzheng, WANG Jinsheng, ZUO Rui, et al. Progress in applications of groundwater ages in groundwater research[J]. Earth and Environment, 2011, 39(1): 113-120.
|
|
翟远征, 王金生, 左锐, 等. 地下水年龄在地下水研究中的应用研究进展[J]. 地球与环境, 2011, 39(1): 113-120.
|
4 |
EDMUNDS W M, SMEDLEY P L. Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer[J]. Applied Geochemistry, 2000, 15(6): 737-752.
|
5 |
ZHANG Xiangyang. Radioisotope—a clock revealing the age of groundwater[J]. Scientific and Cultural Popularization of Land and Resources, 2019(4): 21-23.
|
|
张向阳. 放射性同位素: 揭示地下水年龄的时钟[J]. 国土资源科普与文化, 2019(4): 21-23.
|
6 |
CLARK L F. Environmental isotopesin hydrogeology[M]. New York: Lewis Publishers, 1997: 225.
|
7 |
MAZOR E, JAFFÉ F C, FLUCK J, et al. Tritium corrected 14C and atmospheric noble gas corrected 4He applied to deduce ages of mixed groundwaters: examples from the Baden region, Switzerland[J]. Geochimica et Cosmochimica Acta, 1986, 50(8): 1 611-1 618.
|
8 |
HAN L F, NIEL P L, AGGARWAL P. The curved 14C vs. δ13C relationship in dissolved inorganic carbon: a useful tool for groundwater age- and geochemical interpretations[J]. Chemical Geology, 2014, 387: 111-125.
|
9 |
MAO X M, WANG H, FENG L. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer[J]. Journal of Hydrology, 2018, 560: 572-581.
|
10 |
COLLON P, KUTSCHERA W, LOOSLI H H, et al. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater[J]. Earth and Planetary Science Letters, 2000, 182(1): 103-113.
|
11 |
CRESSWELL R G, JACOBSON G, WISCHUSEN J, et al. Ancient groundwaters in the Amadeus Basin, Central Australia: evidence from the radio-isotope 36Cl[J]. Journal of Hydrology, 1999, 223(3/4): 212-220.
|
12 |
ELMORE D, GOVE H E, FERRARO R, et al. Determination of 129I using tandem accelerator mass spectrometry[J]. Nature, 1980, 286(5 769): 138-140.
|
13 |
CASTRO M C, STUTE M, SCHLOSSER P. Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies[J]. Applied Geochemistry, 2000, 15(8): 1 137-1 167.
|
14 |
CORCHO A J A, PURTSCHERT R, HINSBY K, et al. 36Cl in modern groundwater dated by a multi-tracer approach (3H/3He, SF6, CFC-12 and 85Kr): a case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark[J]. Applied Geochemistry, 2005, 20(3): 599-609.
|
15 |
KING P T, MICHEL J, MOORE W S. Ground water geochemistry of 228Ra, 226Ra and 222Rn[J]. Geochimica et Cosmochimica Acta, 1982, 46(7): 1 173-1 182.
|
16 |
LEI Yan, ZHAI Yuanzheng, WANG Jinsheng, et al. A review of young groundwater dating[J]. Earth and Environment, 2015, 43(2): 233-242.
|
|
雷言, 翟远征, 王金生, 等. 年轻地下水定年研究综述[J]. 地球与环境, 2015, 43(2): 233-242.
|
17 |
FIFIELD L K, MORGENSTERN U. Silicon-32 as a tool for dating the recent past[J]. Quaternary Geochronology, 2009, 4(5): 400-405.
|
18 |
LOOSLI H H, OESCHGER H. 37Ar and 81Kr in the atmosphere[J]. Earth and Planetary Science Letters, 1969, 7(1): 67-71.
|
19 |
TOSAKI Y, TASE N, MASSMANN G, et al. Application of 36Cl as a dating tool for modern groundwater[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 479-485.
|
20 |
KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gases in lakes and ground waters[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 615-700.
|
21 |
COOK P G, SOLOMON D K. Recent advances in dating young groundwater: chlorofluorocarbons, 3H-3He and 85Kr[J]. Journal of Hydrology, 1997, 191(1/2/3/4): 245-265.
|
22 |
KAZEMI G A, LEHR J H, PERROCHET P. Groundwater age [M]. Hoboken, New Jersey: John Wiley & Sons Inc., 2006.
|
23 |
MÜNNICH K O. Messungen des C14-gehaltes von hartem grundwasser[J]. Naturwissenschaften, 1957, 44(2): 32-33.
|
24 |
XU Hui, LIU Yingqiao, LIU Hongfu, et al. Study on the application of isotopic tracer technique to the measurement of stratification parameters of multiple aquifers[J]. Hydrogeology & Engineering Geology, 1996(3): 24-27.
|
|
许惠义,刘应翘,刘洪福,等. 应用同位素示踪技术测试多含水层分层参数的研究[J]. 水文地质工程地质, 1996(3): 24-27.
|
25 |
FONTES J C, GARNIER J M. Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach[J]. Water Resources Research, 1979, 15(2): 399-413.
|
26 |
PEARSON JR F J, HANSHAW B B. Sources of dissolved carbonate species in ground water and their effects on Carbon-14 dating[C]// Conference: symposium on isotope hydrology. Vienna, Austria, 1970.
|
27 |
GEYH M A, WIRTH K. 14C ages of confined groundwater from the Gwandu aquifer, Sokoto Basin, northern Nigeria[J]. Journal of Hydrology, 1980, 48(3/4): 281-288.
|
28 |
VOGEL J C. Investigation of groundwater flow with radiocarbon[C]// Conference: symposium on isotopes in hydrology. Vienna, Austria,1968: 355-369.
|
29 |
TAMERS M A. Surface-water infiltration and groundwater movement in arid zones of Venezuela, Isotopes in Hydrology[C]// Conference: symposium on isotopes in hydrology. Vienna, Austria, 1967: 339-351.
|
30 |
GONFIANTINI R. Consultants meeting on stable isotope standards and intercalibration in hydrology and in geochemistry[R]. Vienna: IAEA, 1976.
|
31 |
MOOK W G. On the reconstruction of the initial 14C content of ground water from the chemical and isotopic composition[C]// 8th international radiocarbon conference. Wellington, 1972.
|
32 |
PLUMMER L N, PRESTEMON E C, PARKHURST D L. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0[J]. Water-Resources Investigations Report, 1994, 94:41-69.
|
33 |
LOGES A, WAGNER T, KIRNBAUER T, et al. Source and origin of active and fossil thermal spring systems, northern Upper Rhine Graben, Germany[J]. Applied Geochemistry, 2012, 27(6): 1 153-1 169.
|
34 |
WANG H, MAO X M, WANG T, et al. Hydrogeochemical characteristics of hot springs exposed from fault zones in western Guangdong and their 14C age correction[J]. Journal of Groundwater Science and Engineering, 2019, 7(1): 1-14.
|
35 |
CHEN Jiansheng, WANG Ting, CHEN Xixi, et al. Discussion on the origin of groundwater in the Orods Basin[J]. Geological Review, 2013, 59(5): 900-908.
|
|
陈建生, 王婷, 陈茜茜, 等. 鄂尔多斯自流盆地地下水来源争议问题讨论[J]. 地质论评, 2013, 59(5): 900-908.
|
36 |
CHEN Xixi, CHEN Jiansheng, WANG Ting. A discussion of groundwater dating in northern China[J]. Water Resources Protection, 2014, 30(2): 1-5, 16.
|
|
陈茜茜, 陈建生, 王婷. 我国北方地下水年龄测定问题讨论[J]. 水资源保护, 2014, 30(2): 1-5, 16.
|
37 |
MAO X M, WANG H, FENG L. Impact of additional dead carbon on the circulation estimation of thermal springs exposed from deep-seated faults in the Dongguan Basin, southern China[J]. Journal of Volcanology and Geothermal Research, 2018, 361: 1-11.
|
38 |
MAO X M, WANG Y X, ZHAN H B, et al. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, southern China[J]. Journal of Geochemical Exploration, 2015, 158: 112-121.
|
39 |
NIJAMPURKAR V N, RAO D K, OLDFIELD F, et al. The half-life of 32Si: a new estimate based on varved lake sediments[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 191-196.
|
40 |
CLAUSEN H B. Dating of polar ice by 32Si[J]. Journal of Glaciology, 1973, 12(66): 411-416.
|
41 |
SOMAYAJULU B L K, LAL D, CRAIG H. Silicon-32 profiles in the South Pacific[J]. Earth and Planetary Science Letters, 1973, 18(2): 181-188.
|
42 |
NIJAMPURKAR V N, AMIN B S, KHARKAR D P, et al. ‘Dating’ ground waters of ages younger than 1, 000-1, 500 years using natural silicon-32[J]. Nature, 1966, 210(5 035): 478-480.
|
43 |
MORGENSTERN U, GEYH M A, KUDRASS H R, et al. 32Si dating of marine sediments from Bangladesh[J]. Radiocarbon, 2001, 43(2B): 909-916.
|
44 |
DEMASTER D J, COCHRAN J K. Particle mixing rates in deep-sea sediments determined from excess 210Pb and 32Si profiles[J]. Earth and Planetary Science Letters, 1982, 61(2): 257-271.
|
45 |
ALBURGER D E, HARBOTTLE G, NORTON E F. Half-life of 32Si[J]. Earth and Planetary Science Letters, 1986, 78(2/3): 168-176.
|
46 |
CHEN Y, KASHY E, BAZIN D, et al. Half-life of 32Si[J]. Physical Review C, 1993, 47(4): 1 462-1 465.
|
47 |
LIU Cunfu, WANG Peiyi, ZHOU Lian, et al. 32Si dating of piedmont plain groundwater in Hebei[J]. Hydrogeology and Engineering Geology, 1999(2): 1-3, 9.
|
|
刘存富, 王佩仪, 周炼, 等. 河北山前平原地下水32Si年龄初探[J]. 水文地质工程地质, 1999(2): 1-3, 9.
|
48 |
MORGENSTERN U, GELLERMANN R, HEBERT D, et al. 32Si in limestone aquifers[J]. Chemical Geology, 1995, 120(1/2): 127-134.
|
49 |
DANSGAARD W, CLAUSEN H B, AARKROG A. The 32Si fallout in Scandinavia a new method for ice dating[J]. Tellus, 1966, 18(2/3): 187-191.
|
50 |
SOMAYAJULU B L K, RENGARAJAN R, LAL D, et al. GEOSECS Pacific and Indian Ocean 32Si profiles[J]. Earth and Planetary Science Letters, 1991, 107(1): 197-216.
|
51 |
KRAUSE J W, BRZEZINSKI M A, JONES J L. Application of low-level beta counting of 32Si for the measurement of silica production rates in aquatic environments[J]. Marine Chemistry, 2011, 127(1/2/3/4): 40-47.
|
52 |
LAL D, SCHINK D R. Low background thin‐wall flow counters for measuring beta activity of solids[J]. Review of Scientific Instruments, 1960, 31(4): 395-398.
|
53 |
MORGENSTERN U, KEITH FIFIELD L, TIMS S G, et al. Progress in AMS measurement of natural 32Si for glacier ice dating[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 739-743.
|
54 |
THOMSEN M S, HEINEMEIER J, HORNSHØJ P, et al. Accelerator mass spectrometry applied to 32Si[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1988, 31(3): 425-432.
|
55 |
HE M, WANG X G, ZHEN G W, et al. AMS measurement of 32Si at the China Institute of Atomic Energy (CIAE)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 104-106.
|
56 |
KIM G, BURNETT W C, DILLON K S. A pre-concentration technique for determination of 32P in natural waters[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001, 249(2): 381-384.
|
57 |
TAO Y Q, DENG Y M, DU Y, et al. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin[J]. Science of the Total Environment, 2020, 737. DOI:10.1016/j.scitotenv.2020.139837 .
|
58 |
KARL D M, TIEN G. MAGIC: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments[J]. Limnology and Oceanography, 1992, 37(1): 105-116.
|
59 |
JAUBERT F, CASSETTE P. Standardization of a 32P solution containing pure-beta impurities using the TDCR method in liquid scintillation counting[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2004, 60(2/3/4): 601-606.
|