地球科学进展 ›› 2023, Vol. 38 ›› Issue (6): 610 -618. doi: 10.11867/j.issn.1001-8166.2023.012

研究论文 上一篇    下一篇

50~1 000 a地下水定年新方法:放射性成因 32P
毛绪美( ), 查希茜   
  1. 中国地质大学(武汉) 环境学院,湖北 武汉 430074
  • 收稿日期:2022-11-30 修回日期:2023-01-15 出版日期:2023-06-10
  • 基金资助:
    国家自然科学基金项目“富CO2热泉水14C年龄校正及其指示的广东深部地热水更新能力研究”(41440027)

Novel Method Based Radiogenic 32P for Determining Groundwater Age from 50 to 1000 Years

Xumei MAO( ), Xixi ZHA   

  1. School of Environment, China University of Geosciences (Wuhan), Wuhan 430074, China
  • Received:2022-11-30 Revised:2023-01-15 Online:2023-06-10 Published:2023-06-07
  • About author:MAO Xumei (1977-), male, Suizhou City, Hubei Province, Associate professor. Research area includes isotope hydrogeology. E-mail: maoxumei@cug.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Study on the 14C age correction of CO2 rich hot spring and its indication of the regeneration capacity of deep geothermal water in Guangdong”(41440027)

地下水年龄是重要的水文地质学参数,可以指示地下水的循环时间和更新能力。常用环境同位素测定地下水年龄,但不同的环境同位素由于半衰期不同导致定年范围有限,50~1 000 a成为地下水定年的“短板”。然而,50~1 000 a是近代人类活动频繁的时期,地下水资源、水环境和水气候记录档案等研究都需要年龄标尺。32Si可以用来确定50~1 000 a地下水的年龄,但是由于其复杂且费时费力的前处理和测试限制了32Si定年的应用。32Si衰变生成子同位素32P,32Si和32P在3个月内会达到放射性平衡,放射性活度达到一致。天然状态下50~1 000 a地下水中的32Si与32P一直处于放射性平衡状态,所以直接富集地下水中的32P可以用于50~1 000 a地下水的年龄测定。地下水中32P的富集采用氢氧化镁共沉淀法,方便快捷。因此,放射性成因32P有望解决50~1 000 a地下水的定年“短板”。在江汉平原地下水实例研究中发现,放射性成因32P定年结果与32Si定年结果基本一致。因此,放射性成因32P是解决50~1 000 a地下水定年“短板”的有效工具,且便捷准确。

Groundwater age is an important and widely used hydrogeological parameter. The environmental isotope method is the most reliable method of groundwater dating. Different environmental isotopic tracers have different dating ranges, and the determination of groundwater age from to 50~1 000 a is the “short board” of dating groundwater. The period of 50~1 000 a is a period of frequent human activity. Therefore, dating groundwater that is 50~1 000 years old is scientifically significant. Silicon-32 (32Si) can be used to determine the age of 50~1 000 a groundwater, but application of 32Si dating is hindered by the complex and time-consuming pretreatment. The decay of 32Si to radiogenic 32P, 32Si, and 32P will reach a radioactive balance within three months and achieve consistent radioactive activity. 32Si and 32P in 50~1 000 a groundwater have been in radioactive equilibrium, so direct enrichment of 32P in groundwater can be used for age determination of 50~1 000 a groundwater. Magnesium hydroxide co-precipitation is used for the enrichment of 32P in groundwater. This method is convenient and rapid. Therefore, 32P is expected to solve the dating deficiency of 50~1 000 a groundwater. The results of 32P dating of groundwater in the Jianghan Plain were roughly consistent with those of 32Si. Therefore, radiogenic 32P groundwater dating is feasible, convenient, and accurate.

中图分类号: 

图1 江汉平原西部起伏平原采样点分布图
Fig. 1 Distribution of sampling points in the western undulating plain of the Jianghan Plain
表1 江汉平原地下水的 32P32Si14C年龄 (a)
Table 1 The 32P32Si and 14C ages of groundwater in the Jianghan Plain
图2 江汉平原地下水的 32P年龄与 32Si年龄对比
Fig. 2 Comparison of 32P ages and 32Si ages of groundwater in the Jianghan Plain
1 CARTWRIGHT I, CURRELL M J, CENDÓN D I, et al. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas[J]. Journal of Hydrology, 2020, 580. DOI:10.1016/j.jhydrol.2019.124247 .
2 MA H, YANG Q, YIN L, et al. Paleoclimate interpretation in northern Ordos Basin: evidence from isotope records of groundwater[J]. Quaternary International, 2018, 467: 204-209.
3 ZHAI Yuanzheng, WANG Jinsheng, ZUO Rui, et al. Progress in applications of groundwater ages in groundwater research[J]. Earth and Environment, 2011, 39(1): 113-120.
翟远征, 王金生, 左锐, 等. 地下水年龄在地下水研究中的应用研究进展[J]. 地球与环境, 2011, 39(1): 113-120.
4 EDMUNDS W M, SMEDLEY P L. Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer[J]. Applied Geochemistry, 2000, 15(6): 737-752.
5 ZHANG Xiangyang. Radioisotope—a clock revealing the age of groundwater[J]. Scientific and Cultural Popularization of Land and Resources, 2019(4): 21-23.
张向阳. 放射性同位素: 揭示地下水年龄的时钟[J]. 国土资源科普与文化, 2019(4): 21-23.
6 CLARK L F. Environmental isotopesin hydrogeology[M]. New York: Lewis Publishers, 1997: 225.
7 MAZOR E, JAFFÉ F C, FLUCK J, et al. Tritium corrected 14C and atmospheric noble gas corrected 4He applied to deduce ages of mixed groundwaters: examples from the Baden region, Switzerland[J]. Geochimica et Cosmochimica Acta, 1986, 50(8): 1 611-1 618.
8 HAN L F, NIEL P L, AGGARWAL P. The curved 14C vs. δ13C relationship in dissolved inorganic carbon: a useful tool for groundwater age- and geochemical interpretations[J]. Chemical Geology, 2014, 387: 111-125.
9 MAO X M, WANG H, FENG L. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer[J]. Journal of Hydrology, 2018, 560: 572-581.
10 COLLON P, KUTSCHERA W, LOOSLI H H, et al. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater[J]. Earth and Planetary Science Letters, 2000, 182(1): 103-113.
11 CRESSWELL R G, JACOBSON G, WISCHUSEN J, et al. Ancient groundwaters in the Amadeus Basin, Central Australia: evidence from the radio-isotope 36Cl[J]. Journal of Hydrology, 1999, 223(3/4): 212-220.
12 ELMORE D, GOVE H E, FERRARO R, et al. Determination of 129I using tandem accelerator mass spectrometry[J]. Nature, 1980, 286(5 769): 138-140.
13 CASTRO M C, STUTE M, SCHLOSSER P. Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies[J]. Applied Geochemistry, 2000, 15(8): 1 137-1 167.
14 CORCHO A J A, PURTSCHERT R, HINSBY K, et al. 36Cl in modern groundwater dated by a multi-tracer approach (3H/3He, SF6, CFC-12 and 85Kr): a case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark[J]. Applied Geochemistry, 2005, 20(3): 599-609.
15 KING P T, MICHEL J, MOORE W S. Ground water geochemistry of 228Ra, 226Ra and 222Rn[J]. Geochimica et Cosmochimica Acta, 1982, 46(7): 1 173-1 182.
16 LEI Yan, ZHAI Yuanzheng, WANG Jinsheng, et al. A review of young groundwater dating[J]. Earth and Environment, 2015, 43(2): 233-242.
雷言, 翟远征, 王金生, 等. 年轻地下水定年研究综述[J]. 地球与环境, 2015, 43(2): 233-242.
17 FIFIELD L K, MORGENSTERN U. Silicon-32 as a tool for dating the recent past[J]. Quaternary Geochronology, 2009, 4(5): 400-405.
18 LOOSLI H H, OESCHGER H. 37Ar and 81Kr in the atmosphere[J]. Earth and Planetary Science Letters, 1969, 7(1): 67-71.
19 TOSAKI Y, TASE N, MASSMANN G, et al. Application of 36Cl as a dating tool for modern groundwater[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 479-485.
20 KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gases in lakes and ground waters[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 615-700.
21 COOK P G, SOLOMON D K. Recent advances in dating young groundwater: chlorofluorocarbons, 3H-3He and 85Kr[J]. Journal of Hydrology, 1997, 191(1/2/3/4): 245-265.
22 KAZEMI G A, LEHR J H, PERROCHET P. Groundwater age [M]. Hoboken, New Jersey: John Wiley & Sons Inc., 2006.
23 MÜNNICH K O. Messungen des C14-gehaltes von hartem grundwasser[J]. Naturwissenschaften, 1957, 44(2): 32-33.
24 XU Hui, LIU Yingqiao, LIU Hongfu, et al. Study on the application of isotopic tracer technique to the measurement of stratification parameters of multiple aquifers[J]. Hydrogeology & Engineering Geology, 1996(3): 24-27.
许惠义,刘应翘,刘洪福,等. 应用同位素示踪技术测试多含水层分层参数的研究[J]. 水文地质工程地质, 1996(3): 24-27.
25 FONTES J C, GARNIER J M. Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach[J]. Water Resources Research, 1979, 15(2): 399-413.
26 PEARSON JR F J, HANSHAW B B. Sources of dissolved carbonate species in ground water and their effects on Carbon-14 dating[C]// Conference: symposium on isotope hydrology. Vienna, Austria, 1970.
27 GEYH M A, WIRTH K. 14C ages of confined groundwater from the Gwandu aquifer, Sokoto Basin, northern Nigeria[J]. Journal of Hydrology, 1980, 48(3/4): 281-288.
28 VOGEL J C. Investigation of groundwater flow with radiocarbon[C]// Conference: symposium on isotopes in hydrology. Vienna, Austria,1968: 355-369.
29 TAMERS M A. Surface-water infiltration and groundwater movement in arid zones of Venezuela, Isotopes in Hydrology[C]// Conference: symposium on isotopes in hydrology. Vienna, Austria, 1967: 339-351.
30 GONFIANTINI R. Consultants meeting on stable isotope standards and intercalibration in hydrology and in geochemistry[R]. Vienna: IAEA, 1976.
31 MOOK W G. On the reconstruction of the initial 14C content of ground water from the chemical and isotopic composition[C]// 8th international radiocarbon conference. Wellington, 1972.
32 PLUMMER L N, PRESTEMON E C, PARKHURST D L. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0[J]. Water-Resources Investigations Report, 1994, 94:41-69.
33 LOGES A, WAGNER T, KIRNBAUER T, et al. Source and origin of active and fossil thermal spring systems, northern Upper Rhine Graben, Germany[J]. Applied Geochemistry, 2012, 27(6): 1 153-1 169.
34 WANG H, MAO X M, WANG T, et al. Hydrogeochemical characteristics of hot springs exposed from fault zones in western Guangdong and their 14C age correction[J]. Journal of Groundwater Science and Engineering, 2019, 7(1): 1-14.
35 CHEN Jiansheng, WANG Ting, CHEN Xixi, et al. Discussion on the origin of groundwater in the Orods Basin[J]. Geological Review, 2013, 59(5): 900-908.
陈建生, 王婷, 陈茜茜, 等. 鄂尔多斯自流盆地地下水来源争议问题讨论[J]. 地质论评, 2013, 59(5): 900-908.
36 CHEN Xixi, CHEN Jiansheng, WANG Ting. A discussion of groundwater dating in northern China[J]. Water Resources Protection, 2014, 30(2): 1-5, 16.
陈茜茜, 陈建生, 王婷. 我国北方地下水年龄测定问题讨论[J]. 水资源保护, 2014, 30(2): 1-5, 16.
37 MAO X M, WANG H, FENG L. Impact of additional dead carbon on the circulation estimation of thermal springs exposed from deep-seated faults in the Dongguan Basin, southern China[J]. Journal of Volcanology and Geothermal Research, 2018, 361: 1-11.
38 MAO X M, WANG Y X, ZHAN H B, et al. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, southern China[J]. Journal of Geochemical Exploration, 2015, 158: 112-121.
39 NIJAMPURKAR V N, RAO D K, OLDFIELD F, et al. The half-life of 32Si: a new estimate based on varved lake sediments[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 191-196.
40 CLAUSEN H B. Dating of polar ice by 32Si[J]. Journal of Glaciology, 1973, 12(66): 411-416.
41 SOMAYAJULU B L K, LAL D, CRAIG H. Silicon-32 profiles in the South Pacific[J]. Earth and Planetary Science Letters, 1973, 18(2): 181-188.
42 NIJAMPURKAR V N, AMIN B S, KHARKAR D P, et al. ‘Dating’ ground waters of ages younger than 1, 000-1, 500 years using natural silicon-32[J]. Nature, 1966, 210(5 035): 478-480.
43 MORGENSTERN U, GEYH M A, KUDRASS H R, et al. 32Si dating of marine sediments from Bangladesh[J]. Radiocarbon, 2001, 43(2B): 909-916.
44 DEMASTER D J, COCHRAN J K. Particle mixing rates in deep-sea sediments determined from excess 210Pb and 32Si profiles[J]. Earth and Planetary Science Letters, 1982, 61(2): 257-271.
45 ALBURGER D E, HARBOTTLE G, NORTON E F. Half-life of 32Si[J]. Earth and Planetary Science Letters, 1986, 78(2/3): 168-176.
46 CHEN Y, KASHY E, BAZIN D, et al. Half-life of 32Si[J]. Physical Review C, 1993, 47(4): 1 462-1 465.
47 LIU Cunfu, WANG Peiyi, ZHOU Lian, et al. 32Si dating of piedmont plain groundwater in Hebei[J]. Hydrogeology and Engineering Geology, 1999(2): 1-3, 9.
刘存富, 王佩仪, 周炼, 等. 河北山前平原地下水32Si年龄初探[J]. 水文地质工程地质, 1999(2): 1-3, 9.
48 MORGENSTERN U, GELLERMANN R, HEBERT D, et al. 32Si in limestone aquifers[J]. Chemical Geology, 1995, 120(1/2): 127-134.
49 DANSGAARD W, CLAUSEN H B, AARKROG A. The 32Si fallout in Scandinavia a new method for ice dating[J]. Tellus, 1966, 18(2/3): 187-191.
50 SOMAYAJULU B L K, RENGARAJAN R, LAL D, et al. GEOSECS Pacific and Indian Ocean 32Si profiles[J]. Earth and Planetary Science Letters, 1991, 107(1): 197-216.
51 KRAUSE J W, BRZEZINSKI M A, JONES J L. Application of low-level beta counting of 32Si for the measurement of silica production rates in aquatic environments[J]. Marine Chemistry, 2011, 127(1/2/3/4): 40-47.
52 LAL D, SCHINK D R. Low background thin‐wall flow counters for measuring beta activity of solids[J]. Review of Scientific Instruments, 1960, 31(4): 395-398.
53 MORGENSTERN U, KEITH FIFIELD L, TIMS S G, et al. Progress in AMS measurement of natural 32Si for glacier ice dating[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 739-743.
54 THOMSEN M S, HEINEMEIER J, HORNSHØJ P, et al. Accelerator mass spectrometry applied to 32Si[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1988, 31(3): 425-432.
55 HE M, WANG X G, ZHEN G W, et al. AMS measurement of 32Si at the China Institute of Atomic Energy (CIAE)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 104-106.
56 KIM G, BURNETT W C, DILLON K S. A pre-concentration technique for determination of 32P in natural waters[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001, 249(2): 381-384.
57 TAO Y Q, DENG Y M, DU Y, et al. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin[J]. Science of the Total Environment, 2020, 737. DOI:10.1016/j.scitotenv.2020.139837 .
58 KARL D M, TIEN G. MAGIC: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments[J]. Limnology and Oceanography, 1992, 37(1): 105-116.
59 JAUBERT F, CASSETTE P. Standardization of a 32P solution containing pure-beta impurities using the TDCR method in liquid scintillation counting[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2004, 60(2/3/4): 601-606.
[1] 徐秋娥, 角媛梅, 张兆年, 丁银平, 张洪森, 陶妍. 地下水年龄的概念及其测定方法研究进展[J]. 地球科学进展, 2023, 38(6): 594-609.
[2] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[3] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
[4] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[5] 周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349.
[6] 郭华明,杨素珍,沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007, 22(11): 1109-1117.
[7] 陈家军,杨建,田亮. 基于孔隙网络模型的非水溶相液体运移实验研究进展[J]. 地球科学进展, 2007, 22(10): 997-1004.
[8] 马金珠,黄天明,丁贞玉,W.M.Edmunds. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930.
阅读次数
全文


摘要