地球科学进展 ›› 2023, Vol. 38 ›› Issue (6): 594 -609. doi: 10.11867/j.issn.1001-8166.2023.028

综述与评述 上一篇    下一篇

地下水年龄的概念及其测定方法研究进展
徐秋娥 1( ), 角媛梅 1( ), 张兆年 1, 丁银平 2, 张洪森 1, 陶妍 1   
  1. 1.云南师范大学地理学部,云南 昆明 650500
    2.乐山师范学院旅游与 地理科学学院,四川 乐山 614000
  • 收稿日期:2022-10-30 修回日期:2023-01-19 出版日期:2023-06-10
  • 通讯作者: 角媛梅 E-mail:qiueXu8403@163.com;ymjiao@ynnu.edu.cn
  • 基金资助:
    云南省基础研究专项重点项目“云南高原特色农业流域景观变化及其水生态环境效应研究”(202201AS070024);云南省基础研究专项重大项目“苍山综合科学考察”(202201BC070001);云南师范大学研究生科研创新基金项目“哈尼梯田区多水体稳定氢氧同位素景观格局及其影响因素研究”(YJSJJ22-B99)

Definitions of Groundwater Age and Dating Methods: Progresses and Prospects

Qiue XU 1( ), Yuanmei JIAO 1( ), Zhaonian ZHANG 1, Yinping DING 2, Hongsen ZHANG 1, Yan TAO 1   

  1. 1.Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    2.College of Tourism and Geographical Sicence, Leshan Normal University, Leshan Sichuan 614000, China
  • Received:2022-10-30 Revised:2023-01-19 Online:2023-06-10 Published:2023-06-07
  • Contact: Yuanmei JIAO E-mail:qiueXu8403@163.com;ymjiao@ynnu.edu.cn
  • About author:XU Qiue (1996-), female, Qujing City, Yunnan Province, Master student. Research area includes isotope hydrology. E-mail: qiueXu8403@163.com
  • Supported by:
    the Yunnan Provincial Basic Research Project-Key Project “Research on landscape change and water ecological environment effect of characteristic agricultural watershed in Yunnan Plateau”(202201AS070024);Yunnan Fundamental Research Projects “Scientific investigation of Cangshan Mountain”(202201BC070001);Postgraduate Research and Innovation Fund of Yunnan Normal University “Study on the landscape pattern of hydrogen and oxygen isotopes and its key impact factors in multiple Water in the Hani rice terraces”(YJSJJ22-B99)

地下水测年是水循环尤其是水文地质研究的关键环节之一,但已提出的地下水年龄概念及其测年方法具有复杂多样且难以区分的特点,给实际应用和进一步发展带来困扰。系统梳理了学术界常出现的地下水年龄和滞留时间的概念内涵,同时对衍生的理想化年龄、示踪剂年龄、表观年龄、年龄分布和模型年龄等相关概念进行了辨析,综合分析并绘制了地下水年龄相关概念间的关系图;根据示踪剂类型,总结并评述了地下水测年的天然同位素示踪剂方法(包括放射性核素衰变法和稳定核素线性积累法)、人类活动产生的核素和温室气体示踪剂样品的采集、分析方法及其优缺点;指出地下水测年方法存在水质点和水体系统2个研究角度,并对当前正大量兴起的、从水体系统(动态)角度出发的多示踪剂联用和年龄数据的模型解释方法进行了评述,认为地下水测年方法需根据研究目标和示踪剂适用范围综合确定,未来应重点关注表征地下水系统时空动态的年龄分布研究,加强地质、水文和水化学等多学科数据信息的整合,从而建立地下水流数值模型来刻画年龄分布及模型研究。

Groundwater dating is one of the key links in the study of water cycles, especially in hydrogeology. However, the proposed concept of groundwater age and its dating methods are complex and difficult to distinguish, which hinders practical application and further development. This study systematically examines the concept of groundwater age and resident time that often appear in academic circles, simultaneously differentiating and analyzing the derived idealized age, tracer age, apparent age, age distribution, and model age, and comprehensively analyzes and draws a relationship diagram among the definitions. Data of the sample collection and analysis methods, advantages, and disadvantages of the natural isotopes of groundwater dating (including the radionuclide decay method and stable nuclide linear calculation method), and the methods for detecting radionuclides produced by human activities and greenhouse gas tracers are summarized and reviewed. There are two perspectives of groundwater dating methods: water sample points and water systems. The model interpretation methods of multi-tracer combination and age data from the perspective of the water body system (dynamic) are reviewed. Furthermore, we synthetically state that the groundwater dating method should be determined comprehensively according to the research objectives and range of application of tracers, with more attention paid to the study of age distribution characterizing the spatiotemporal dynamics of groundwater systems. Future studies should strengthen the integration and model research of multidisciplinary data, such as geology, hydrology, and hydrochemistry, to establish a numerical model of groundwater flow to describe age distribution and model research.

中图分类号: 

(1) 地下水年龄及其相关术语概念关系图 13 23
1 GLEESON T, CUTHBERT M, FERGUSON G, et al. Global groundwater sustainability, resources, and systems in the anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2020, 48(1): 431-463.
2 RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7 707): 651-659.
3 JASECHKO S, PERRONE D. Global groundwater wells at risk of running dry[J]. Science, 2021, 372(6 540): 418-421.
4 FOSTER S, CHILTON J, NIJSTEN G J, et al. Groundwater—a global focus on the ‘local resource’[J]. Current Opinion in Environmental Sustainability, 2013, 5(6): 685-695.
5 DALIN C, WADA Y, KASTNER T, et al. Groundwater depletion embedded in international food trade[J]. Nature, 2017, 543(7 647): 700-704.
6 JAIN M, FISHMAN R, MONDAL P, et al. Groundwater depletion will reduce cropping intensity in India[J]. Science Advances, 2021, 7(9). DOI:10.1126/sciadv.abd2849 .
7 FERGUSON G, GLEESON T. Vulnerability of coastal aquifers to groundwater use and climate change[J]. Nature Climate Change, 2012, 2(5): 342-345.
8 OUDE E G, van BAAREN E, de LOUW P. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands[J]. Water Resources Research, 2010, 46(10). DOI:10.1029/2009WR008719 .
9 FREEZE R A, CHERRY J A. Groundwater[M]. Englewood Cliffs, NJ: Prentice-Hall, 1979.
10 KAZEMI G A, LEHR J H, PERROCHET P. Groundwater age[M]. Canada: John Wiley & Sons Inc., 2006.
11 CHAMBERS L A, GOODDY D C, BINLEY A M. Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: a review[J]. Geoscience Frontiers, 2019, 10(5): 1 643-16 52.
12 FERGUSON G, CUTHBERT M O, BEFUS K, et al. Rethinking groundwater age[J]. Nature Geoscience, 2020, 13(9): 592-594.
13 SUCKOW A, AGGARWAL P K, ARAGUÁS L. Isotope methods for dating old groundwater[M]. Vienna: International Atomic Energy Agency, 2013.
14 SELTZER A M, BEKAERT D V, BARRY P H, et al. Groundwater residence time estimates obscured by anthropogenic carbonate[J]. Science Advances, 2021, 7(17). DOI:10.1126/sciadv.abf3503 .
15 WILSKE C, SUCKOW A, MALLAST U, et al. A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system[J]. Hydrology and Earth System Sciences, 2020, 24(1): 249-267.
16 MOECK C, POPP A, BRENNWALD M, et al. Combined method of 3H/3He apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area[J]. Journal of Contaminant Hydrology, 2021, 238. DOI:10.1016/j.jconhyd.2021.103773 .
17 KELLY J L, GLENN C R. Chlorofluorocarbon apparent ages of groundwaters from west Hawaii, USA[J]. Journal of Hydrology, 2015, 527: 355-366.
18 KAMTCHUENG B T, FANTONG W Y, WIRMVEM M J, et al. A multi-tracer approach for assessing the origin, apparent age and recharge mechanism of shallow groundwater in the Lake Nyos catchment, Northwest, Cameroon[J]. Journal of Hydrology, 2015, 523: 790-803.
19 TOBIAS H, JANEK G, JÜRGEN S, et al. Groundwater age distribution in a highly dynamic coastal aquifer[J]. Advances in Water Resources, 2021, 149. DOI:10.1016/J.ADVWATRES.2021.103850 .
20 LAMONTAGNE S, SUCKOW A, GERBER C, et al. Groundwater sources for the Mataranka Springs (Northern Territory, Australia)[J]. Scientific Reports, 2021, 11(1). DOI:10.1038/s41598-021-03701-1 .
21 MASSOUDIEH A, VISSER A, SHARIFI S, et al. A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers[J]. Applied Geochemistry, 2014, 50: 252-264.
22 SMERDON B D, GARDNER W P. Characterizing groundwater flow paths in an undeveloped region through synoptic river sampling for environmental tracers[J]. Hydrological Processes, 2022, 36(1). DOI:10.1002/HYP.14464 .
23 SUCKOW A. The age of groundwater—definitions, models and why we do not need this term[J]. Applied Geochemistry, 2014, 50: 222-230.
24 MCCALLUM J L, COOK P G, SIMMONS C T. Limitations of the use of environmental tracers to infer groundwater age[J]. Groundwater, 2015, 53: 56-70.
25 JIANG Xiaowei, WAN Li, WANG Xusheng, et al. Distribution of groundwater age in drainage basins[J]. Hydrogeology and Engineering Geology, 2012, 39(4):1-6.
蒋小伟, 万力, 王旭升, 等. 盆地地下水年龄空间分布规律[J]. 水文地质工程地质, 2012, 39(4): 1-6.
26 COOK P G, HERCZEG A L. Environmental tracers in subsurface hydrology[M]. Australia: Springer, 2000: 2-3.
27 HAJDAS I, ASCOUGH P, GARNETT M H, et al. Radiocarbon dating[J]. Nature Reviews Methods Primers, 2021, 1(1). DOI:10.1038/s43586-021-00058-7 .
28 HAN L F, PLUMMER L N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater[J]. Earth-Science Reviews, 2016, 152: 119-142.
29 SCHAEFER J M, CODILEAN A T, WILLENBRING J K, et al. Cosmogenic nuclide techniques[J]. Nature Reviews Methods Primers, 2022, 2(1). DOI:10.1038/s43586-022-00096-9 .
30 TONG A L, GU J Q, YANG G M, et al. An atom trap system for 39Ar dating with improved precision[J]. Review of Scientific Instruments, 2021, 92(6). DOI:10.1063/s.0050620 .
31 BANKS E W, COOK P G, OWOR M, et al. Environmental tracers to evaluate groundwater residence times and water quality risk in shallow unconfined aquifers in sub Saharan Africa[J]. Journal of Hydrology, 2021, 598. DOI:10.1016/j.jhydrol.2020.125753 .
32 KIM S H, KIM H R, YU S, et al. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: with emphasis on legacy effects on water management[J]. Water Research, 2021, 191. DOI:10.1016/j.watres.2021.116814 .
33 PÉROTIN L, de MONTETY V, LADOUCHE B, et al. Transfer of dissolved gases through a thick karstic vadose zone—implications for recharge characterisation and groundwater age dating in karstic aquifers[J]. Journal of Hydrology, 2021, 601. DOI:10.1016/j.jhydrol.2021.126576 .
34 CARTWRIGHT I, CENDÓN D, CURRELL M, et al. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations[J]. Journal of Hydrology, 2017, 555: 797-811.
35 IVERACH C P, CENDÓN D I, MEREDITH K T, et al. A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer[J]. Hydrology and Earth System Sciences, 2017, 21(11): 5 953-5 969.
36 REZNIK I J, PURTSCHERT R, SÜLTENFUΒ J, et al. Fresh and saline groundwater ages and flow dynamics in a perturbed coastal aquifer[J]. Journal of Hydrology, 2021, 597. DOI:10.1016/j.jhydrol.2020.125721 .
37 JU Y, MASSOUDIEH A, GREEN C T, et al. Complexity of groundwater age mixing near a seawater intrusion zone based on multiple tracers and Bayesian inference[J]. Science of the Total Environment, 2021, 753. DOI:10.1016/j.scitotenv.2020.141994 .
38 PANG Zhonghe, WANG Quanjiu, SONG Xianfang. Isotope hydrology[M]. Beijing: Science Press,2011.
庞忠和, 王全九, 宋献方. 同位素水文学[M]. 北京: 科学出版社, 2011.
39 MODICA E, PLUMMER L N, BURTON H T. Evaluating the source and residence times of groundwater seepage to streams, New Jersey Coastal Plain[J]. Water Resources Research, 1998, 34(11): 2 797-2 810.
[1] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[2] 符亚洲;彭建堂;石学法. 海洋环境中的锇同位素研究现状[J]. 地球科学进展, 2004, 19(2): 237-244.
阅读次数
全文


摘要