1 |
HEINRICH H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2): 142-152.
|
2 |
DANSGAARD W, WHITE J W C, JOHNSEN S J. The abrupt termination of the Younger Dryas climate event[J]. Nature, 1989, 339(6 225): 532-534.
|
3 |
BOND G, BROECKER W, JOHNSEN S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6 442): 143-147.
|
4 |
HAYS I J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record[J]. Milankouitch and Climate, NATO ASI Series, Series C: Mathematical and Physical Sciences, 1984, 126: 269-305.
|
5 |
LISIECKI L E. Links between eccentricity forcing and the 100,000-year glacial cycle[J]. Nature Geoscience, 2010, 3(5): 349-352.
|
6 |
ABE-OUCHI A, SAITO F, KAWAMURA K, et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume[J]. Nature, 2013, 500(7 461): 190-193.
|
7 |
TARASOV L, PELTIER W R. A high-resolution model of the 100 ka ice-age cycle[J]. Annals of Glaciology, 1997, 25: 58-65.
|
8 |
TARASOV L, PELTIER W R. Terminating the 100 kyr ice age cycle[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D18): 21 665-21 693.
|
9 |
CHARBIT S, KAGEYAMA M, ROCHE D, et al. Investigating the mechanisms leading to the deglaciation of past continental Northern Hemisphere ice sheets with the CLIMBER-GREMLINS coupled model[J]. Global and Planetary Change, 2005, 48(4): 253-273.
|
10 |
ADELINE F, CATHERINE R, GILLES R. Modelling of Last Glacial Maximum ice sheets using different accumulation parameterizations[J]. Annals of Glaciology, 1997, 24: 223-228.
|
11 |
PHILIPPE H, STEPHEN T. A three-dimensional climate—ice-sheet model applied to the Last Glacial Maximum[J]. Annals of Glaciology, 1997, 25: 333-339.
|
12 |
RAMSTEIN G, FLUTEAU F, BESSE J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6 627): 788-795.
|
13 |
YAMAGISHI T, ABE-OUCHI A, SAITO F, et al. Re-evaluation of paleo-accumulation parameterization over Northern Hemisphere ice sheets during the ice age examined with a high-resolution AGCM and a 3-D ice-sheet model[J]. Annals of Glaciology, 2005, 42: 433-440.
|
14 |
GREVE R, WYRWOLL K H, EISENHAUER A. Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene[J]. Annals of Glaciology, 1999, 28: 1-8.
|
15 |
CHARBIT S, RITZ C, PHILIPPON G, et al. Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle[J]. Climate of the Past, 2007, 3(1): 15-37.
|
16 |
NIU L, LOHMANN G, HINCK S, et al. The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial cycle using PMIP3 models[J]. Journal of Glaciology, 2019, 65(252): 645-661.
|
17 |
MARTIN M A, WINKELMANN R, HASELOFF M, et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK)-part 2: dynamic equilibrium simulation of the Antarctic ice sheet[J]. The Cryosphere, 2011, 5(3): 727-740.
|
18 |
WINKELMANN R, MARTIN M A, HASELOFF M, et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK)-part 1: model description[J]. The Cryosphere, 2011, 5(3): 715-726.
|
19 |
ALBRECHT T, WINKELMANN R, LEVERMANN A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)-part 1: boundary conditions and climatic forcing[J]. The Cryosphere, 2020, 14(2): 599-632.
|
20 |
ALBRECHT T, WINKELMANN R, LEVERMANN A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)-part 2: parameter ensemble analysis[J]. The Cryosphere, 2020, 14(2): 633-656.
|
21 |
LINGLE C S, CLARK J A. A numerical model of interactions between a marine ice sheet and the solid earth: application to a West Antarctic ice stream[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 1 100-1 114.
|
22 |
BUELER E, LINGLE C S, BROWN J. Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations[J]. Annals of Glaciology, 2007, 46: 97-105.
|
23 |
AMANTE C, EAKINS B. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[Z]. NOAA technical memorandum NESDIS NGDC, 2009.
|
24 |
DAVIES J H. Global map of solid Earth surface heat flow[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4 608-4 622.
|
25 |
CALOV R, GREVE R. A semi-analytical solution for the positive degree-day model with stochastic temperature variations[J]. Journal of Glaciology, 2005, 51(172): 173-175.
|
26 |
KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.
|
27 |
ADLER R F, HUFFMAN G J, CHANG A, et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1 147-1 167.
|
28 |
ZHANG X, LOHMANN G, KNORR G, et al. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation[J]. Climate of the Past, 2013, 9(5): 2 319-2 333.
|
29 |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7 005): 147-151.
|
30 |
MARTRAT B, GRIMALT J O, SHACKLETON N J, et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin[J]. Science, 2007, 317(5 837): 502-507.
|
31 |
SHAKUN J D, LEA D W, LISIECKI L E, et al. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling[J]. Earth and Planetary Science Letters, 2015, 426: 58-68.
|
32 |
LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1). DOI:10.1029/2004PA001071 .
|
33 |
GRANT K M, ROHLING E J, BAR-MATTHEWS M, et al. Rapid coupling between ice volume and polar temperature over the past 150, 000 years[J]. Nature, 2012, 491(7 426): 744-747.
|
34 |
LEA D W, MARTIN P A, PAK D K, et al. Reconstructing a 350ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 283-293.
|
35 |
DAVIS B. Calculating glacier ice volumes and see level equivalents[R]. IPCC, Antarctic Glaciers, 2017.
|
36 |
BARD E, HAMELIN B, FAIRBANKS R G. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130, 000 years[J]. Nature, 1990, 346(6 283): 456-458.
|
37 |
BARD E, HAMELIN B, FAIRBANKS R G, et al. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals[J]. Nature, 1990, 345(6 274): 405-410.
|
38 |
KLEMAN J, JANSSON K, de ANGELIS H, et al. North American Ice Sheet build-up during the last glacial cycle, 115-21kyr[J]. Quaternary Science Reviews, 2010, 29(17/18): 2 036-2 051.
|
39 |
BATCHELOR C L, MARGOLD M, KRAPP M, et al. The configuration of northern hemisphere ice sheets through the Quaternary[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-11601-2 .
|
40 |
GOWAN E J, ZHANG X, KHOSRAVI S, et al. A new global ice sheet reconstruction for the past 80 000 years[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-21469-w .
|
41 |
KUHLE M. Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate[J]. Quaternary International, 1998, 45: 71-108.
|
42 |
SHI Yafeng. The quaternary glaciations and environmental variations in China[M]. Shijiazhuang: Hebei Science & Technology Press, 2006.
|
|
施雅风. 中国第四纪冰川与环境变化[M]. 石家庄: 河北科学技术出版社, 2006.
|
43 |
ZHAO Jingdong, SHI Yafeng, WANG Jie. Comparison between quaternary glaciations in China and the Marine oxygen Isotope Stage (MIS): an improved Schema[J]. Acta Geographica Sinica, 2011, 66(7):867-884.
|
|
赵井东, 施雅风, 王杰. 中国第四纪冰川演化序列与MIS对比研究的新进展[J]. 地理学报, 2011, 66(7):867-884.
|
44 |
GREVE R, BLATTER H. Dynamics of ice sheets and glaciers[M]. Dordrecht: Springer, 2009.
|
45 |
ULLMAN D J, CARLSON A E, ANSLOW F S, et al. Laurentide ice-sheet instability during the lastdeglaciation[J]. Nature Geoscience, 2015, 8(7): 534-537.
|
46 |
van de BERG W J, van den BROEKE M, ETTEMA J, et al. Significant contribution of insolation to Eemian melting of the Greenland ice sheet[J]. Nature Geoscience, 2011, 4(10): 679-683.
|
47 |
MARSHALL S J, JAMES T S, CLARKE G K C. North American ice sheet reconstructions at the last glacial maximum[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 175-192.
|
48 |
ZWECK C, HUYBRECHTS P. Modeling of the Northern Hemisphere ice sheets during the last glacial cycle and glaciological sensitivity[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D7). DOI:10.1029/2004JD005489 .
|
49 |
NIU L, LOHMANN G, GOWAN E J. Climate noise influences ice sheet mean state[J]. Geophysical Research Letters, 2019, 46(16): 9 690-9 699.
|
50 |
ULLMAN D J, LEGRANDE A N, CARLSON A E, et al. Assessing the impact of Laurentide Ice Sheet topography on glacial climate[J]. Climate of the Past, 2014, 10(2): 487-507.
|
51 |
LÖFVERSTRÖM M, CABALLERO R, NILSSON J, et al. Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle[J]. Climate of the Past, 2014, 10(4): 1 453-1 471.
|
52 |
ZHANG X, LOHMANN G, KNORR G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7 514): 290-294.
|
53 |
ZHANG Zhongshi, YAN Qing, ZHANG Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during quaternary[J]. Quaternary Sciences, 2017, 37(5):1 009-1 016.
|
|
张仲石, 燕青, 张冉, 等. 第四纪北半球冰盖发育与东亚气候的遥相关[J]. 第四纪研究, 2017, 37(5):1 009-1 016.
|