地球科学进展 ›› 2023, Vol. 38 ›› Issue (6): 631 -643. doi: 10.11867/j.issn.1001-8166.2023.025

研究论文 上一篇    下一篇

河西走廊东部 20192022年空气孢粉组合特征及影响因素
蓝小玉 1 , 2 , 3( ), 杨东 1 , 2( ), 苗运法 3 , 4, 赵永涛 3, 雷艳 3 , 4, 万正 5   
  1. 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.甘肃省绿洲资源环境与可持续发展重点 实验室,甘肃 兰州 730070
    3.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    4.中国科学院大学,北京 100049
    5.兰州大学资源环境学院,甘肃 兰州 730000
  • 收稿日期:2023-02-01 修回日期:2023-04-07 出版日期:2023-06-10
  • 通讯作者: 杨东 E-mail:lanxiaoyu160@163.com;yangdong@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金项目“甘肃窑街侏罗纪裸子植物重要类群的微细构造与古环境演变”(41972020);“新疆东部湖泊孢粉记录的末次盛冰期到中全新世植被变化及降水定量重建研究”(42271176);“亚洲中纬度地区上新世大空间降水重建与区域对比研究”(42161144012)

Characteristics and Influencing Factors of Airborne Pollen Assemblage in Eastern Hexi Corridor from 2019 to 2022

Xiaoyu LAN 1 , 2 , 3( ), Dong YANG 1 , 2( ), Yunfa MIAO 3 , 4, Yongtao ZHAO 3, Yan LEI 3 , 4, Zheng WAN 5   

  1. 1.College of Geography and Enviromental Science, Northwest Normal University, Lanzhou 730070, China
    2.Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, China
    3.Key Laboratory of Desert and Desertification, Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
    5.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2023-02-01 Revised:2023-04-07 Online:2023-06-10 Published:2023-06-07
  • Contact: Dong YANG E-mail:lanxiaoyu160@163.com;yangdong@nwnu.edu.cn
  • About author:LAN Xiaoyu (1996-), female, Jinzhong City, Shanxi Province, Master student. Research area includes modern process of pollen. E-mail: lanxiaoyu160@163.com
  • Supported by:
    the National Natural Science Foundation of China “Microstructures and Paleoenvironmental evolution of important groups of jurassic gymnosperms in Yaojie, Gansu Province”(41972020);“The vegetation history and quantitative precipitation reconstruction from the Last Glacial Maximum to mid Holocene (~30-4 ka BP) based on lacustrine pollen data in eastern Xinjiang”(42271176);“Pliocene precipitation variability and environmental impact across mid-latitude Asia”(42161144012)

对空气孢粉散播和沉积过程的研究有助于理解现代植被组成及其与气候变化的关系,但迄今为止在干旱区开展的空气孢粉研究工作仍十分有限。利用自主设计的孢粉收集装置,在河西走廊东部祁连山北侧的古浪地区进行了连续3年(2019年7月至2022年6月)以月为时间尺度的观测研究,分析了草本植物、木本植物花期和非花期的孢粉百分比组成特征,探究了主要花粉的代表性;同时,讨论了孢粉浓度变化基本特征及其与典型气象要素(温度、降水、风速和风向)之间的关系。研究结果表明: 研究点空气孢粉组合主要以草本类型为主,高值出现在7~10月(93.7%),低值出现在4~6月(62.9%),相应的木本植物花粉高值出现在4~6月(37.1%),低值出现在7~10月(6.3%)。草本植物和木本植物孢粉浓度与各自花期有很好的对应关系:草本植物花期和高浓度出现在7~10月,木本植物则主要出现在4~6月,草本植物浓度对总浓度影响最大。 孢粉组合与当地植被有很好的对应关系,杨属(Populus)和柏科(Cupressaceae)花粉能较好地反映当地植被特征,禾本科(Poaceae)花粉具低代表性,蒿属(Artemisia)、苋科(Amaranthaceae)、桦木属(Betula)以及云杉属(Picea)花粉具有超代表性。 由于木本植物主要分布在东南方,其花期(4~6月)的风向会影响木本植物花粉含量,非花期(11月至次年3月)风速在1.48~1.75 m/s时最有利于花粉的传播,风速过小时风的携带能力差,风速过大,对孢粉的飘散和收集产生负面影响;降水与孢粉产量存在正相关关系,即花期时降水越多孢粉浓度越高。上述研究结果可以为解释河西走廊东部不同时间尺度的孢粉记录与气候环境变化的关系,以及河西走廊地区生态环境保护提供重要的孢粉生态学方面的参考依据。

Studies of aerospore dispersal and deposition processes can contribute to the understanding of modern vegetation composition and its relationship with climate change. However, studies on aerospore dispersal in arid regions are still very limited. Using a self-designed spore pollen collection device, a study was conducted in the Gulang area located in the northern side of the Qilian Mountains in the eastern part of the Hexi Corridor for three consecutive years (July 2019 to June 2022) on a monthly time scale. The aims were to analyze the characteristics of spore pollen percentage composition of herbaceous and woody plants during the flowering and non-flowering periods, and to explore the representativeness of major pollens. The basic characteristics of spore pollen concentration changes and their relationship with typical. At the same time, the basic characteristics of sporulation concentration and its relationship with typical meteorological elements (temperature, precipitation, wind speed and wind direction) were examined. Four main results were obtained. First, the air pollen assemblage at the study site was mainly herbaceous, with high values occurring from July to October (93.7%) and low values from April to June (62.9%). The corresponding high values of woody plant pollen occurred from April to June (37.1%) and low values from July to October (6.3%). The pollen concentrations of herbaceous and woody plants corresponded well with their respective flowering periods. The flowering period and high concentrations of herbaceous plants occurred from July to October, while woody plants mainly occurred from April to June. The herbaceous plant concentration had the greatest influence on the total concentration. Second, the spore pollen combinations corresponded well with the local vegetation, poplar (Populus), and cypress (Cupressaceae) pollen. The pollen of Populus and Cupressaceae can better reflect the characteristics of local vegetation, while the pollen of Poaceae has low representativeness and the pollen of Artemisia, Amaranthaceae, Betula and Picea has super representativeness. Third, since woody plants are mainly distributed in the southeast, the wind direction during the flowering period from April to June affects the pollen content of woody plants, and the wind speed during the non-flowering period (November to March) is in the interval of 1.48~1.75 m/s which is most favorable for pollen dispersal. Too little wind speed has poor wind carrying capacity, and too much wind speed negatively affects the dispersal and collection of spore pollen. A positive correlation between precipitation and pollen production was evident. In other words, the higher the precipitation at the time of flowering, the higher the pollen concentration. The above findings can provide an important reference basis for interpreting the use of pollen to study the relationship between spore pollen records and climate and environmental changes at different time scales in the Hexi Corridor, as well as for the ecological protection in the Hexi Corridor region in terms of spore pollen ecology.

中图分类号: 

图1 河西走廊东部概况图
(a) 观测点位置;(b) 1981—2010年古浪地区月平均温度和月总降水量(http://data.cma.cn/);(c) 植被分带图
Fig. 1 Overview map of the eastern Hexi Corridor
(a) The observation location; (b) Mean monthly temperature and precipitation from the adjacent Gulang weather station, covering the period 1981-2010 (http://data.cma.cn/); (c) Vegetation zonation map
图2 20197月至20226月空气孢粉百分比
Fig. 2 Percentage of air pollen from July 2019 to June 2022
图3 20197月至20226月空气孢粉浓度
Fig. 3 Airborne pollen concentration from July 2019 to June 2022
图4 20197月至20226月气象数据
(a)年平均温度、年总降水量和年平均风速;(b)月总降水量;(c)月平均温度;(d)月平均风速;气象数据来自全球数据同化系统(GDAS, http://www.arl.noaa.gov)
Fig. 4 Meteorological data from July 2019 to June 2022
(a) Average annual temperature, total annual precipitation and average annual wind speed; (b) Total monthly precipitation; (c) Average monthly temperature; (d) Average monthly wind speed;Meteorological data from the Global Data Assimilation System (GDAS, http://www.arl.noaa.gov)
图5 河西走廊东部48 h后向轨迹聚类分析结果
星号为观测点;彩色线条为不同方向气流路径;括号内数字为风在相应时间段内经过该路径频率
Fig. 5 Results of 48 h backward trajectory clustering analysis in eastern Hexi Corridor
The asterisks are the observation points; The colored lines are the paths of airflow in different directions; The numbers in brackets are the frequency of wind passing through the path during the corresponding time period
图6 孢粉浓度与气象要素的关系
(a)木本花期孢粉浓度与气象要素的关系;(b) 草本花期孢粉浓度与气象要素的关系;(c) 非花期风速与孢粉浓度的关系;(d) 非花期平均风速在1.48~1.75 m/s区间的天数与孢粉浓度的关系
Fig. 6 Relationship between pollen concentration and meteorological elements
(a) Relationship between spore pollen concentration and meteorological elements during woody flowering; (b) Relationship between spore pollen concentration and meteorological elements during herbaceous flowering; (c) Relationship between wind speed and spore pollen concentration during non-flowering period; (d) Relationship between the number of days with mean wind speed in the range of 1.48~1.75 m/s and spore pollen concentration during non-flowering period
图7 河西走廊东部20214~6月空气孢粉运移方向与孢粉传播示意图
(a) 空气孢粉传播示意图(Cc为冠层成分、Cr为长距离降水成分、Cw为径流成分、Ct为树干空间成分、Cg为重力成分);(b)~(d) 彩色线条为2021年4~6月不同方向气流路径,括号内数字为风在相应时间段内经过该路径的频率
Fig. 7 Schematic diagram of airborne pollen transport direction and airborne pollen dispersal from April to June 2021 in eastern Hexi Corridor
(a) Diagram of airborne pollen dispersal(Cc is the canopy component, Cr is the long-range precipitation component, Cw is the runoff component, Ct is the trunk space component, and Cg is the gravity component);(b)~(d) The colored lines show the path of airflow in different directions from April to June 2021, the numbers in parentheses are the frequency of wind passing through the path during the corresponding time period
3 GUO C, MA Y Z, LI D D, et al. Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: implications of palaeoclimatic and palaeocological reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547. DIO:10.1016/j.palaeo.2020.109699.
4 GAJEWSKI K, LÉZINE A M, VINCENS A, et al. Modern climate-vegetation-pollen relations in Africa and adjacent areas[J]. Quaternary Science Reviews, 2002, 21(14/15): 1 611-1 631.
5 Houyuan LÜ, WANG Shuyun, SHEN Caiming, et al. Spatial pattern of modern Abies and Picea pollen in the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(1): 39-49.
吕厚远, 王淑云, 沈才明, 等. 青藏高原现代表土中冷杉和云杉花粉的空间分布[J]. 第四纪研究, 2004, 24(1): 39-49.
6 WHITMORE J, GAJEWSKI K, SAWADA M, et al. Modern pollen data from north America and Greenland for multi-scale paleoenvironmental applications[J]. Quaternary Science Reviews, 2005, 24(16/17): 1 828-1 848.
7 LUO Chuanxiu, ZHENG Zhuo, PAN Anding, et al. Spatial distribution of modern pollen in Xinjiang region[J]. Scientia Geographica Sinica, 2008, 28(2): 272-275.
罗传秀, 郑卓, 潘安定, 等. 新疆地区表土孢粉空间分布规律研究[J]. 地理科学, 2008, 28(2): 272-275.
8 PANG R M, XU Q H, DING W, et al. Pollen assemblages of cultivated vegetation in central and southern Hebei Province[J]. Journal of Geographical Sciences, 2011, 21(3): 549-560.
9 WANG Y B, HERZSCHUH U. Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model[J]. Review of Palaeobotany and Palynology, 2011, 168: 31-40.
10 XU Q H, CAO X Y, TIAN F, et al. Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction[J]. Science China Earth Sciences, 2014, 57(6): 1 254-1 266.
11 XU Yingqin, YAN Shun, JIA Baoquan, et al. Numerical relationship between the surface spore-pollen and surrounding vegetation on the southern slope of Tianshan Mountains[J]. Arid Land Geography, 1996, 19(3): 24-30.
许英勤, 阎顺, 贾宝全, 等. 天山南坡表土孢粉分析及其与植被的数量关系[J]. 干旱区地理, 1996, 19(3): 24-30.
12 Xinmiao LÜ, CHEN Hui, LI Shuangcheng, et al. Surface pollen assemblages and quantitative characteristics in eastern Qilian Mountains[J]. Journal of Mountain Science, 2004, 22(2): 199-206.
1 MIAO Y F, HERRMANN M, WU F L, et al. What controlled Mid-Late Miocene long-term aridification in Central Asia?—global cooling or Tibetan Plateau uplift: a review[J]. Earth-Science Reviews, 2012, 112(3/4): 155-172.
2 ANDERSON P M, BARTLEIN P J, BRUBAKER L B, et al. Modern analogs of late-quaternary pollen apectra from the western interior of north-America [J]. Journal of Biogeography, 1989, 16(6): 573-596.
12 吕新苗, 陈辉, 李双成, 等. 东祁连山表土花粉组合及其数量特征[J]. 山地学报, 2004, 22(2): 199-206.
13 YANG Zhenjing, ZHANG Yun, BI Zhiwei, et al. Surface pollen distribution in the southern slope of Tianshan Mountains, Xinjiang[J]. Arid Land Geography, 2011, 34(6): 880-889.
杨振京, 张芸, 毕志伟, 等. 新疆天山南坡表土花粉的初步研究[J]. 干旱区地理, 2011, 34(6): 880-889.
14 COUR P, ZHENG Z, DUZER D, et al. Vegetational and climatic significance of modern pollen rain in northwestern Tibet[J]. Review of Palaeobotany and Palynology, 1999, 104(3/4): 183-204.
15 LI Yuecong, XU Qinghai, CAO Xianyong, et al. Pollen influx and surface pollen assemblage on the northern slope of Taibai Mountain[J]. Geographical Research, 2008, 27(3): 536-546.
李月丛, 许清海, 曹现勇, 等. 太白山北坡花粉通量与表土花粉研究[J]. 地理研究, 2008, 27(3): 536-546.
16 PAN Y F, YAN S, BEHLING H, et al. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction[J]. Aerobiologia, 2013, 29(2): 161-173.
17 LI Y C, GE Y W, XU Q H, et al. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China[J]. Atmospheric Environment, 2015, 106: 92-99.
18 XU Qinghai, LI Manyue, ZHANG Shengrui, et al. Modern pollen processes of China: progress and problems [J]. Science China:Earth Sciences, 2015, 45(11): 1 661-1 682.
许清海, 李曼玥, 张生瑞, 等. 中国第四纪花粉现代过程:进展与问题 [J]. 中国科学:地球科学, 2015, 45(11): 1 661-1 682.
19 LI Yuanyuan, ZHANG Yun, NI Jian, et al. The correlation between airborne Betula pollen content and meteorological factors in the Tianshan Mountains, Xinjiang, China[J]. Chinese Science Bulletin, 2019, 64(18): 1 909-1 921.
李媛媛, 张芸, 倪健, 等. 新疆天山大气桦木花粉与气象因子的相关分析[J]. 科学通报, 2019, 64(18): 1 909-1 921.
20 ZHAO Y T, MIAO Y F, FANG Y M, et al. Investigation of factors affecting surface pollen assemblages in the Balikun Basin, central Asia: implications for palaeoenvironmental reconstructions[J]. Ecological Indicators, 2021, 123(3). DOI:10.1016/j.ecolind.2020.107332 .
21 CHEN Lixin, ZHANG Yun, KONG Zhaochen. Airborne pollen patterns and their relationship with meteorological factors in the Betula microphylla-dominated wetland of Ebinur Lake, Xinjiang, China [J]. Science China:Earth Sciences, 2021, 51(11): 1 935-1 949.
陈立欣, 张芸, 孔昭宸. 新疆艾比湖小叶桦湿地空气花粉散布特征及其与气象因子的关系 [J]. 中国科学:地球科学, 2021, 51(11): 1 935-1 949.
22 SONG Zhichen. Airborne pollen assemblage in the western suburbs of Beijing [J]. Quaternary Sciences, 1959, 2(2): 69-74.
宋之琛. 北京西近郊空气中的孢粉组合 [J]. 第四纪研究, 1959, 2(2): 69-74.
23 ZHANG Jintan. airborne pollen in the western suburbs of Beijing [J]. Journal of Integrative Plant Biology, 1964, (3): 282-285.
张金谈. 北京西郊空气中的花粉 [J]. 植物生态学报, 1964, 12(3): 282-285.
24 LI Yuecong, XU Qinghai, GE Yawen, et al. Airborne pollen assemblages and maximum source area in dust and non-dust weather in the central and eastern Loess Plateau[J]. Geographical Research, 2014, 33(12): 2 367-2 381.
李月从, 许清海, 葛亚汶, 等. 黄土高原中东部沙尘与非沙尘天气花粉组成及来源范围[J]. 地理研究, 2014, 33(12): 2 367-2 381.
25 FANG Y M, MA C M, BUNTING M J, et al. Airborne pollen concentration in Nanjing, Eastern China, and its relationship with meteorological factors[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(19): 10 842-10 856.
26 LÜ X M, PAUDAYAL K N, UHL D, et al. Phenology and climatic regime inferred from airborne pollen on the northern slope of the Qomolangma (Everest) region[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(24). DOI:10.1029/2020JD033405 .
27 ZHU Yan, CHENG Bo, CHEN Fahu, et al. Pollen transport in the Shiyang River drainage, arid China [J]. Chinese Science Bulletin, 2004, 49(1): 15-21.
朱艳, 程波, 陈发虎, 等. 石羊河流域现代孢粉传播研究[J]. 科学通报, 2004, 49(1): 15-21.
28 ZHAO Y T, MIAO Y F, YUAN L, et al. Non-linear response of mid-latitude Asian dryland vegetation to Holocene climate fluctuations[J]. Catena, 2022, 213(5). DOI:10.1016/j.catena.2022.106212 .
29 JIA Wenxiong, HE Yuanqing, LI Zongxing, et al. Regional characteristics of climatic change trend and break during last 50 years in Hexi Corridor[J]. Scientia Geographica Sinica, 2008, 28(4): 525-531.
贾文雄, 何元庆, 李宗省, 等. 近50年来河西走廊平原区气候变化的区域特征及突变分析[J]. 地理科学, 2008, 28(4): 525-531.
30 PASKEN R, PIETROWICZ J A. Using dispersion and mesoscale meteorological models to forecast pollen concentrations[J]. Atmospheric Environment, 2005, 39(40): 7 689-7 701.
31 LU X M, HERRMANN M, MOSBRUGGER V, et al. Airborne pollen in the Nam Co Basin and its implication for palaeoenvironmental reconstruction[J]. Review of Palaeobotany and Palynology, 2010, 163(1/2): 104-112.
32 FANG Yiman. Records of airborne pollen deposition and its relationship with meteorological factors in Xianlin district, Nanjing [D]. Nanjing: Nanjing University,2015.
方伊曼. 南京仙林地区大气花粉传播规律及其与气象要素的关系研究[D]. 南京: 南京大学,2015.
33 LUO C X, JIANG W M, CHEN C X, et al. Modern pollen distribution in the northeastern Indian Ocean and its significance[J]. International Journal of Biometeorology, 2018, 62(8): 1 471-1 488.
34 ZHAO K L, ZHOU X Y, JI M, et al. Palynological evidence of Late Holocene Paleo-Monsoon in eastern Pamir [J]. Geophysical Research Letters, 2019, 46(16): 10 015-10 023.
35 CHEN Haiyan. Modern pollen distribution pattern in China and its relationships with vegetation and climate[D]. Jinhua: Zhe-jiang Normal University,2021.
陈海燕. 中国现代花粉分布格局及其与植被和气候的关系[D]. 金华: 浙江师范大学,2021.
36 LI Yuecong, XU Qinghai, XIAO Jule, et al. Relationship between surface pollen and vegetation in some shrub communities of northern China[J]. Scientia Geographica Sinica, 2007, 27(2): 205-210.
李月丛, 许清海, 肖举乐, 等. 中国北方几种灌丛群落表土花粉与植被关系研究[J]. 地理科学, 2007, 27(2): 205-210.
37 XU Q H, LI Y C, YANG X L, et al. Quantitative relationship between pollen and vegetation in northern China[J]. Science in China Series D: Earth Sciences, 2007, 50(4): 582-599.
38 WU Jing, MA Yuzhen, SANG Yanli, et al. Quantitative reconstruction of paleovegetation and development R-value model: an application of R-value and ERV model in Xinglong Mountain natural protection region[J]. Quaternary Sciences, 2013, 33(3): 554-564.
伍婧, 马玉贞, 桑艳礼, 等. 古植被定量重建与R值模型的发展: R值和ERV模型在兴隆山地区的应用[J]. 第四纪研究, 2013, 33(3): 554-564.
39 LI Yuecong, XU Qinghai, YANG Xiaolan, et al. Pollen assemblages of major steppe communities in China[J]. Acta Ecologica Sinica, 2005, 25(3): 555-564.
李月丛, 许清海, 阳小兰, 等. 中国草原区主要群落类型花粉组合特征[J]. 生态学报, 2005, 25(3): 555-564.
40 CAI Yao, WANG Yan, JIANG Fuchu, et al. Relationship between the surface pollen and modern vegetation in Zoigê Plateau, northern Sichuan, China[J]. Geological Bulletin of China, 2010, 29(5): 707-712.
蔡遥, 王燕, 蒋复初, 等. 川北若尔盖高原表土孢粉的特征及其与现代植被的关系[J]. 地质通报, 2010, 29(5): 707-712.
41 WANG Kaifa. An introduction to palynology [M]. Beijing:Peking University Press, 1983.
王开发. 孢粉学概论 [M]. 北京: 北京大学出版社, 1983.
42 HE Haijuan, ZHANG Deshan, QIAO Bingshan. Preliminary approach of the relationship between Airborne pollen amount and meteorological factors in Beijing urban area[J]. Chinese Journal of Microbiology and Immunology, 2001, 21(): 36-38.
何海娟, 张德山, 乔秉善. 北京城区空气中花粉含量与气象要素的关系初探[J]. 中华微生物学和免疫学杂志, 2001, 21(): 36-38.
43 ZHANG Shuli, ZHANG Deshan, HE Haijuan. Analysis of weather conditions of pollen amount in Beijing urban area[J]. Meteorological Science and Technology, 2003, 31(6): 406-408.
张姝丽, 张德山, 何海娟. 北京城区花粉数量天气条件分析[J]. 气象科技, 2003, 31(6): 406-408.
44 SABIT M, RAMOS J D, ALEJANDRO G J, et al. Seasonal distribution of airborne pollen in Manila, Philippines, and the effect of meteorological factors to its daily concentrations[J]. Aerobiologia, 2016, 32(3): 375-383.
45 ZHANG Yuchen, MA Chunmei, FANG Yiman. Advance in the study on the monitoring and spread of airborne pollen[J]. Acta Micropalaeontologica Sinica, 2018, 35(2): 200-210.
张雨辰, 马春梅, 方伊曼. 大气花粉监测与传播研究进展[J]. 微体古生物学报, 2018, 35(2): 200-210.
46 LIU Keli, SUN Hongbin, WANG Xudong, et al. Analysis of relationship between pollen concentration and meteorological factors in Hohhot[J]. Meteorology Journal of Inner Mongolia, 2009(6): 22-24.
刘克利, 孙红斌, 王旭东, 等. 呼和浩特市花粉浓度与气象因子关系的分析[J]. 内蒙古气象, 2009(6): 22-24.
47 TAUBER H. Investigations of the mode of pollen transfer in forested areas[J]. Review of Palaeobotany and Palynology, 1967, 3(1/2/3/4): 277-286.
[1] 刘新,刘晓汝,马耀明,李伟平. 喜马拉雅北部地区春季大气特征及日变化分析[J]. 地球科学进展, 2010, 25(8): 836-843.
阅读次数
全文


摘要