地球科学进展 ›› 2023, Vol. 38 ›› Issue (6): 644 -660. doi: 10.11867/j.issn.1001-8166.2023.026

研究简报 上一篇    

岩石圈动力学过程砂箱物理模拟研究进展
魏全超 1 , 2( ), 刘恣君 2, AHMEN Khalid 2, 郭虹兵 2, 徐宏远 2, 王恒 2, 邓宾 2 , 3( )   
  1. 1.中国石油化工股份有限分公司勘探分公司,四川 成都 610000
    2.成都理工大学能源学院,四川 成都 610059
    3.成都理工大学“油气藏地质及开发工程”国家重点实验室,四川 成都 610059
  • 收稿日期:2022-12-16 修回日期:2023-04-13 出版日期:2023-06-10
  • 通讯作者: 邓宾 E-mail:weiqc.ktnf@sinopec.com;dengbin3000@163.com
  • 基金资助:
    四川省科技计划项目“基于地质大数据的四川盆地深部地质结构物理模拟研究”(2022JDRC0001)

A Review on Analog Experiments of Geodynamic Processes

Quanchao WEI 1 , 2( ), Zijun LIU 2, Khalid AHMEN 2, Hongbing GUO 2, Hongyuan XU 2, Heng WANG 2, Bin DENG 2 , 3( )   

  1. 1.South Exploration and Exploitation Subsidiary Company of Sinopec, Chengdu 610000, China
    2.College of Energy, Chengdu University of Technology, Chengdu 610059, China
    3.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
  • Received:2022-12-16 Revised:2023-04-13 Online:2023-06-10 Published:2023-06-07
  • Contact: Bin DENG E-mail:weiqc.ktnf@sinopec.com;dengbin3000@163.com
  • About author:WEI Quanchao (1981-), male, Liaocheng City, Shandong Province, Engineer. Research areas include sand box analog models and hydrocarbon accumulation. E-mail: weiqc.ktnf@sinopec.com
  • Supported by:
    Scientific and Technological Innovation Talent Program of Sichuan Province “Research on analogue experiments of deep geological structure in Sichuan Basin based on geological big data”(2022JDRC0001)

自20世纪中叶以来,基于地质构造过程自相似性的砂箱物理模拟实验为岩石圈动力学过程研究提供了独立有效的手段。基于以自然界岩石圈深部变形过程为研究对象的砂箱物理模拟实验研究结果,系统阐述岩石圈动力学变形过程的“自然原型—实验模型”间相似性机理,综述砂箱物理模拟所揭示的岩石圈动力学过程机制与特征,并以坎塔布里亚构造带和扎格罗斯—伊朗高原为实例,对比探讨了岩石圈变形过程与砂箱模拟实验之间的耦合性,以期为同行研究提供参考与借鉴。砂箱物理实验模型与自然原型之间相似性机理,强调二者具有流变学和几何学上非牛顿流体连续介质相似性,才能实现低惯量流动下(Reynolds数Re<<1)动力相似性。砂箱物理模拟实验通常使用干颗粒材料、(非)线性黏性流变学材料、黏弹性材料等构建多层物质结构模型,代表岩石圈双层、三层和四层结构模型。基于砂箱物理模拟实验装置及其实验过程中是否有外部动力和物质等加入,岩石圈动力学砂箱物理模型大致分为3类:系统能量物质守恒的内动力驱动模型、开放系统的外动力驱动模型和内外动力混合驱动模型。砂箱物理模拟研究表明,岩石圈动力学变形过程主要受控于岩石圈多圈层耦合性及其能干性(即弹性强度或黏性刚度)和先存(或继承性)非均质性结构特征,从而控制并影响着浅表盆—山系统变形与整体岩石圈层变形的特征。

Since the middle of the 20th century, analog experiments have provided an independent method for studying geodynamic processes. Based on analog experiments, this paper reviews the similarity mechanism between the natural prototype and experimental model of geodynamic processes and reviews the mechanism and characteristics of the lithosphere dynamic process revealed by analog experiments. Furthermore, we compare analog data of the Cantabria Belt and Zagros Iran Plateau. Analog experiments use dry particle materials, (non-) linear viscous rheological materials, and viscoelastic materials to establish multilayer material structure models (i.e., double-, three-, and four-layer lithosphere structures). In general, the analog experimental devices include three types: an internal dynamic drive model of the conservation of the system energy material, external dynamic drive model of the open system, and internal and external dynamic hybrid drive models. Geodynamic deformation of the lithosphere is controlled by the coupling of multiple layers of the lithosphere (i.e., elastic strength or viscous stiffness) and an inherited heterogeneous structure. This controls the deformation of the basin-mountain system in the shallow water and lithosphere. The analog experiment data can provide a better explanation of the geodynamic processes and would play an increasingly important role in tectonic evolution, big-data structure of the basin, and disaster warning.

中图分类号: 

图1 典型岩石圈分层模型及全球大陆岩石圈有效弹性厚度( Te )特征(据参考文献[ 18 - 19 ]修改)
(a)岩石圈差异应力强度与深度关系图,从左数第一幅图代表岩石圈果冻三明治结构,第二幅图代表岩石圈烤布蕾甜点结构,第三幅图代表岩石圈香蕉船结构;(b)岩石圈中含水等挥发份更易于形成湿的能干性较低的下地壳和地幔岩石圈,从而影响岩石圈强度。黑色线条方向代表 Te各向异性的方向,长度指的是 Te各向异性的大小( Tmax- Tmin)/( Tmax+ Tmin),灰色代表低可信度区域
Fig. 1 Mechanical layers of the continental lithosphere and global map of the elastic thicknessmodified after references18-19])
(a) Rock strength versus depth for various continental conditions, from left to right they represent jelly sandwich model, crème br?lée model and banana spilt model in sequence; (b) The water in the lithosphere makes it easier to form wet (weak) lower crust and wet (weak) mantle lithosphere,thereby affecting the strength of the lithosphere. The black bars indicate magnitude and direction of Te gradient, the length of black bars is given by the magnitude of Te anisotropy from the ratio ( Tmax- Tmin)/( Tmax+ Tmin), grey areas correspond to regions with low reliablity
图2 自然界实例—实验室模型物质应变速率特征对比(据参考文献[ 29 ]修改)
Fig. 2 Comparison of strain rate characteristics between natural examples and analogue modelsmodified after reference 29 ])
图3 岩石圈动力学过程的砂箱物理模拟实验多圈层结构模型(据参考文献[ 15 ]修改)
双层和四层岩石圈结构模型分别代表具高地温梯度—高地温场岩石圈特征和低地温梯度—低地温场岩石圈特征,而三层岩石圈结构模型代表二者之间的过渡型
Fig. 3 Simplified models of multi-layered lithospheric structure for analogue experiments of geodynamic processesmodified after reference 15 ])
The 2-layer and 4-layer lithospheric structural models represent the characteristics of the lithosphere with high temperature gradient-high temperature field and low geothermal gradient-low geothermal field,respectively. Whilst the 3-layer lithospheric structural model represents the transitional type between the two
图4 岩石圈俯冲作用动力学典型砂箱装置(据参考文献[ 39 43 50 - 53 ]修改)
(a)浮力驱动条件下洋陆汇聚碰撞模拟装置及其原理图,上地幔物质由葡萄糖浆构成,上部插图为其基本浮力驱动原理图;(b)浮力驱动下岩石圈俯冲(b 1)与动力学外动力条件(b 2)岩石圈俯冲砂箱物理模拟装置对比图;(c)外动力驱动变角度的岩石圈俯冲砂箱物理模拟装置,(c 1)俯冲带模拟实验几何原理图代表俯冲带中不同类型板块的下沉和地幔流动,下倾下沉板块沿固定轨迹以速率 UD 运动并驱动地幔楔中的拐角流, UT 为俯冲后退时板块平移速率, URUDUT 的向量和,坐标轴显示了板块的对称轴位置;(c 2)板块俯冲装置组件图(包含模拟地幔的葡萄糖浆);(d)外动力驱动陆内碰撞变形过程砂箱物理模拟装置图,表示不同地区岩石圈强度特征;(e)外动力沟—弧—盆俯冲碰撞砂箱物理模拟装置图,(e 1)顶面图,(e 2)分别为剖面图和岩石圈层温度与应力特征图
Fig. 4 Typical experimental set-ups for the geodynamic lithosphere subduction sandbox modelingmodified after references394350-53])
(a) Experimental apparatus to model ocean-continent convergence and collision driven by buoyancy forces, with glucose syrup used to represent the sublithospheric upper mantle. the upper schematic diagram shows the principle of buoyancy-driven. (b) Three-dimensional laboratory models of upper mantle subduction, (b 1) buoyancy-driven model, (b 2) model driven by external approach. (c) Subduction zone geometry and experimental set-up driven by external approach. Diagram illustrating different styles of plate sinking and mantle flow in subduction zones. Downdip sinking involves plate motion along a fixed trajectory at a rate ( UD ) which drives a corner flow in the mantle wedge.Rollback subduction involves downdip and translational ( UT ) plate velocities,and drives a mantle return flow from the ocean side of the plate to the wedge. The rollback velocity ( UR ) is a vector sum of UD and UT . The coordinate axes are shown,with the position of the plate’s axis of symmetry(c 1). Photograph showing components of the plate subduction apparatus with the tank of glucose syrup that simulates the mantle (c 2). (d) Modeling setup of collisional mountain belts driven by the external approach and initial strength variation among modeling domains as shown by strength envelopes (e) Sketch of the experimental set-up with trench-arc-basin subduction system driven by external approach, (e 1) map-view of the model, (e 2) cross-section of the model and rheological stratification of the model continental lithosphere
图5 岩石圈圈层耦合/非耦合变形作用特征(据参考文献[ 27 45 63 67 ]修改)
(a)岩石圈纵弯褶皱变形作用分类图,当下地壳为软弱层时上地壳和岩石圈地幔形成不同波长褶皱变形(λ 12)、深浅部解耦,其余情况下形成单级协调褶皱;(b)多圈层岩石圈结构模型(上下分别为双层和三层结构模型)模拟表明岩石圈低起伏度、长波长纵弯变形作用主要受控于上地壳和岩石圈地幔耦合;(c)岩石圈耦合性与对称性岩石圈变形结构相关性模式,岩石圈圈层耦合性主要取决于应变速率和岩石圈地幔强度
Fig. 5 Coupling and decoupling deformation of the multiply lithoshperical layersmodified after references27456367])
(a) Sketch of typical folding models, when the lower crust is weak, the upper crust and lithospheric mantle thus form different wavelength folds and deformations(λ 1 < λ 2), thus deep and shallow is decoupled. In other cases, single harmonic folds are formed; (b) Multi-layer model of lithospheric structure (consisting of 2-layer and 3-layer structure model) shows that the low undulation and long wavelength longitudinal bending deformation of the lithosphere, mainly controlled by the coupling of the upper crust and lithospheric mantle; (c) Coupling lithospheric strcutre and the deformation of symmetric lithospheric deformation, and coupling of lithospheric layer depends on strain rate and lithospheric mantle strength
图6 岩石圈深部结构与非均质性变形作用特征(据参考文献[ 47 71 73 ]修改)
(a)非均质性岩石圈板块边界控制岩石圈变形过程与俯冲作用,从上向下依次为垂直均一边界、倾斜非均质性边界和壳—幔解耦下倾斜非均质性边界,其中插图为岩石圈及其红色软弱层结构模型;(b)岩石圈先存构造走向与挤压方向斜度角对其走向结构再活化控制影响性,其中红色SD带表示先存构造带;(c)岩石圈上地幔强度沿走向变化导致洋—陆板块碰撞带走向上俯冲极性反转
Fig. 6 Structures in deep or heterogeneities influence on deformation of the multiply lithoshperical layersmodified after references477173])
(a) Heterogeneous/heterogeneous lithospheric plate boundaries control the deformation process and subduction of the lithosphere. From top to bottom, there are vertical plate boundary, inclined plate boundary and inclined plate boundary under crust-mantle decoupling. The illustration shows a model of the lithosphere and its red weak layer structure. (b) The influence of the inclination angle between the strike and compression directions of pre existing structures in the lithosphere on the reactivation control of their strike structures, with the red SD zone indicating the pre-existing structural zone. (c) Changes in the strength of the upper mantle along the strike in the lithosphere result in reversal of subduction polarity along-strike of the oceanic continental plate collision zone
图7 伊比利亚板内构造带砂箱物理模拟实验对比结果(据参考文献[ 78 ]修改)
(a)伊比利亚板内坎塔布里亚造山带区域位置图;(b)三层岩石圈结构砂箱物理模拟实验边界条件设置;(c)模型A和模型B在体积缩短量为20%时的顶面照片、结构解释图和数字地貌高程图,其中黑色实线为软弱岩石圈模型分界线
Fig. 7 Comparison results of sand box physical simulation experiment of Iberian intraplate structural beltmodified after reference 78 ])
(a) Tectonics of the Cantabria orocline in Iberian intraplate;(b) Analogue modeling setup of 3-layer lithospheric structure;(c) Top-view images, structural interpretation and digital elevation models show the results of 20% bulk shorteing of Model A and Model B, the black solid line represents the boundary between the weak lithosphere model and the strong lithosphere model
图8 扎格罗斯—伊朗高原砂箱物理模拟实验对比结果(据参考文献[ 77 ]修改)
(a)格罗斯—伊朗高原现今地质结构—构造特征,黑色箭头表示现今阿拉伯板块碰撞挤压方向;(b)双层岩石圈砂箱物理模拟实验边界条件设置;(c)模型演化过程顶面照片及其结构解释图(7%、14%和38%体积缩短量)
Fig. 8 Comparison results of Zagros Iran Plateau sandbox physical simulation experimentmodified after reference 77 ])
(a) Tectonics of the Zagros-Iranian Plateau, the black arrow indicates direction of convergence of Arabia Plate; (b) Sketch of the experimental apparatus and model construction; (c) Top-view and structural interpretation show the the evolution of experiments (7%,14% and 38% bulk shorteing)
1 JACOBY W R. Paraffin model experiment of plate tectonics[J]. Tectonophysics, 1976, 35(1/2/3): 103-113.
2 KINCAID C, OLSON P. An experimental study of subduction and slab migration[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B13): 13 832-13 840.
3 SHEMENDA A I, GROCHOLSKY A L. Physical modeling of slow seafloor spreading[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B5): 9 137-9 153.
4 BRUNE J N, ELLIS M A. Structural features in a brittle-ductile wax model of continental extension[J]. Nature,1997,387(6 628):67-70.
5 CORTI G, RANALLI G, MULUGETA G, et al. Control of the rheological structure of the lithosphere on the inward migration of tectonic activity during continental rifting[J]. Tectonophysics, 2010, 490(3/4): 165-172.
6 DAVY P, COBBOLD P R. Experiments on shortening of a 4-layer model of the continental lithosphere[J]. Tectonophysics, 1991, 188(1/2): 1-25.
7 RAMBERG H. Model studies in relation to intrusion of plutonic bodies[J]. Mechanism of Igneous Intrusion,1970(2):261-286.
8 WHITEHEAD J A, LUTHER D S. Dynamics of laboratory diapir and plume models[J]. Journal of Geophysical Research, 1975, 80(5): 705-717.
9 KOYI H. Analogue modelling: from a qualitative to a quantitative technique—a historical outline[J]. Journal of Petroleum Geology, 1997, 20(2): 223-238.
10 DAVAILLE A, LIMARE A. Laboratory studies of mantle convection[M]// Treatise on geophysics. Amsterdam: Elsevier, 2007: 89-165.
11 SCHELLART W P, STRAK V. A review of analogue modelling of geodynamic processes: approaches, scaling, materials and quantification, with an application to subduction experiments[J]. Journal of Geodynamics, 2016, 100: 7-32.
12 HUBBERT M K. Theory of scale models as applied to the study of geologic structures[J]. Geological Society of America Bulletin, 1937, 48(10): 1 459-1 520.
13 COLLETTA B, LETOUZEY J, PINEDO R, et al. Computerized X-ray tomography analysis of sandbox models: examples of thin-skinned thrust systems[J]. Geology, 1991, 19(11): 1 063-1 067.
14 ADAM J, KLINKMÜLLER M, SCHREURS G, et al. Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: integration of X-ray computed tomography and digital volume correlation techniques[J]. Journal of Structural Geology, 2013, 55: 127-149.
15 ZWAAN F, SCHREURS G, BUITER S J H. A systematic comparison of experimental set-ups for modelling extensional tectonics[J]. Solid Earth, 2019, 10(4): 1 063-1 097.
16 RAMBERG H. Model experimentation of the effect of gravity on tectonic processes[J]. Geophysical Journal International, 1967, 14(1/2/3/4): 307-329.
17 DIXON J M, SUMMERS J M. Recent developments in centrifuge modelling of tectonic processes: equipment, model construction techniques and rheology of model materials[J]. Journal of Structural Geology, 1985, 7(1): 83-102.
18 AUDET P, BÜRGMANN R. Dominant role of tectonic inheritance in supercontinent cycles[J]. Nature Geoscience, 2011, 4(3): 184-187.
19 ALLEN A P, ALLEN R J. Basin analysis: principles and application to petroleum play assessment[M]. New Jersey:Wiley-Blackwell Press,2013.
20 CHEN Wangping, MOLNAR P. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere[J]. Journal of Geophysical Research: Solid Earth,1983,88(B5):4 183-4 214.
21 MAGGI A, JACKSON J A, PRIESTLEY K, et al. A re‐assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur inthe continental mantle?[J]. Geophysical Journal International, 2000, 143(3): 629-661.
22 WATTS A B, BUROV E B. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness[J]. Earth and Planetary Science Letters, 2003, 213(1/2): 113-131.
23 BÜRGMANN R, DRESEN G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567.
24 ZOBACK M D, ZOBACK M L, MOUNT V S, et al. New evidence on the state of stress of the San andreas fault system[J]. Science, 1987, 238(4 830): 1 105-1 111.
25 JACKSON J. Strength of the continental lithosphere: time to abandon the jelly sandwich?[J]. GSA Today, 2002, 12(9): 4-9.
26 BUROV E B, WATTS A B. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”?[J]. GSA Today, 2006, 16(1): 4-10.
27 CALIGNANO E, SOKOUTIS D, WILLINGSHOFER E, et al. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens[J]. Earth and Planetary Science Letters, 2015, 424: 38-50.
28 FACCENDA M, GERYA T V, CHAKRABORTY S. Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production[J]. Lithos, 2008, 103(1/2): 257-287.
29 WEIJERMARS R, SCHMELING H. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth and Planetary Interiors, 1986, 43(4): 316-330.
30 RAMBERG H. Gravity, deformation and the earth’s crust: in theory, experiments and geological application[M]. 2d ed. New York: Academic Press, 1981.
31 BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4): 615-626.
32 DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb Theory[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10 087-10 101.
33 LOHRMANN J, KUKOWSKI N, ADAM J, et al. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges[J]. Journal of Structural Geology, 2003, 25(10): 1 691-1 711.
34 PANIEN M, SCHREURS G, PFIFFNER A. Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments[J]. Journal of Structural Geology, 2006, 28(9): 1 710-1 724.
35 COBBOLD P R, CASTRO L. Fluid pressure and effective stress in sandbox models[J]. Tectonophysics, 1999, 301(1/2): 1-19.
36 DUARTE J C, SCHELLART W P, CRUDEN A R. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[J]. Geophysical Journal International, 2013, 195(1): 47-66.
37 FUNICIELLO F, FACCENNA C, GIARDINI D, et al. Dynamics of retreating slabs: 2. insights from three-dimensional laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4). DOI:10.1029/2001JB000896 .
38 SCHELLART W P. Rheology and density of glucose syrup and honey: determining their suitability for usage in analogue and fluid dynamic models of geological processes[J]. Journal of Structural Geology, 2011, 33(6): 1 079-1 088.
39 WILLINGSHOFER E, SOKOUTIS D. Decoupling along plate boundaries: key variable controlling the mode of deformation and the geometry of collisional mountain belts[J]. Geology, 2009, 37(1): 39-42.
40 LUTH S, WILLINGSHOFER E, SOKOUTIS D, et al. Does subduction polarity changes below the Alps? Inferences from analogue modelling[J]. Tectonophysics, 2013, 582: 140-161.
41 CHEN Z H, SCHELLART W P, DUARTE J C. Quantifying the energy dissipation of overriding plate deformation in three-dimensional subduction models[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 519-536.
42 CANIVEN Y, DOMINGUEZ S, SOLIVA R, et al. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle[J]. Tectonics, 2015, 34(2): 232-264.
43 EDWARDS S J, SCHELLART W P, DUARTE J C. Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust[J]. Tectonics, 2015, 34(7): 1 494-1 515.
44 MARQUES F O. Thrust initiation and propagation during shortening of a 2-layer model lithosphere[J]. Journal of Structural Geology, 2008, 30(1): 29-38.
45 SOKOUTIS D, BURG J P, BONINI M, et al. Lithospheric-scale structures from the perspective of analogue continental collision[J]. Tectonophysics, 2005, 406(1/2): 1-15.
46 WILLINGSHOFER E, SOKOUTIS D, LUTH S W, et al. Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling[J]. Geology, 2013, 41(12): 1 239-1 242.
47 CALIGNANO E, SOKOUTIS D, WILLINGSHOFER E, et al. Oblique contractional reactivation of inherited heterogeneities: cause for arcuate orogens[J]. Tectonics, 2017, 36(3): 542-558.
48 SCHELLART W P. Kinematics and flow patterns in deep mantle and upper mantle subduction models: influence of the mantle depth and slab to mantle viscosity ratio[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3). DOI:10.1029/2007GC001656 .
49 MOLNAR N E, CRUDEN A R, BETTS P G. Interactions between propagating rotational rifts and linear rheological heterogeneities: insights from three-dimensional laboratory experiments[J]. Tectonics, 2017, 36(3): 420-443.
50 KINCAID C, GRIFFITHS R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425(6 953): 58-62.
51 SCHELLART W P. Evolution of subduction zone curvature and its dependence on the trench velocity and the slab to upper mantle viscosity ratio[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11). DOI:10.1029/2009JB006643 .
52 BOUTELIER D, ONCKEN O, CRUDEN A R. Trench-parallel shortening in the forearc caused by subduction along a seaward-concave plate boundary: insights from analogue modelling experiments[J]. Tectonophysics, 2014, 611: 192-203.
53 SCHELLART W P, LISTER G S. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia[J]. Journal of the Geological Society, 2005, 162(6): 959-972.
54 GOREN L, AHARONOV E, MULUGETA G, et al. Ductile deformation of passive margins: a new mechanism for subduction initiation[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8). DOI:10.1029/2005JB004179 .
55 GUILLAUME B, FUNICIELLO F, FACCENNA C, et al. Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian slab[J]. Geology, 2010, 38(9): 819-822.
56 DRUKEN K A, LONG M D, KINCAID C. Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains[J]. Geophysical Research Letters, 2011, 38(13).DOI:10.1029/2011GL047541 .
57 SOKOUTIS D, WILLINGSHOFER E. Decoupling during continental collision and intra-plate deformation[J]. Earth and Planetary Science Letters, 2011, 305(3/4): 435-444.
58 MACDOUGALL J G, KINCAID C, SZWAJA S, et al. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments[J]. Geophysical Journal International, 2014, 197(2): 705-730.
59 DAVAILLE A, JAUPART C. Transient high-Rayleigh-number thermal convection with large viscosity variations[J].Journal of Fluid Mechanics,1993,253:141-166.
60 DAVY P, COBBOLD P R. Indentation tectonics in nature and experiment. 1. experiments scaled for gravity[J]. Bulletin of the Geological Institute of Uppsala,1988,14:129-141.
61 AUTIN J, BELLAHSEN N, HUSSON L, et al. Analog models of oblique rifting in a cold lithosphere[J]. Tectonics, 2010, 29(6).DOI:10.1029/2010TC002671 .
62 SCHELLART W P, JESSELL M W, LISTER G S. Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacific: new insights from analogue modeling[J]. Tectonics, 2003, 22(5). DOI:10.1029/2002TC001473 .
63 CLOETINGH S, BUROV E, POLIAKOV A. Lithosphere folding: primary response to compression? (from central Asia to Paris basin)[J]. Tectonics, 1999, 18(6): 1 064-1 083.
64 CLOETINGH S, BUROV E B. Thermomechanical structure of European continental lithosphere, constraints from rheological profiles and EET estimates[J]. Geophysical Journal International, 1996, 124(3): 695-723.
65 FERNÁNDEZ-LOZANO J, SOKOUTIS D, WILLINGSHOFER E, et al. Cenozoic deformation of Iberia: a model for intraplate mountain building and basin development based on analogue modeling[J]. Tectonics, 2011, 30(1). DOI:10.1029/2010TC002719 .
66 BUROV E B. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 2011, 28(8): 1 402-1 443.
67 BUROV E B, LOBKOVSKY L I, CLOETINGH S, et al. Continental lithosphere folding in Central Asia (part II): constraints from gravity and topography[J]. Tectonophysics, 1993, 226(1/2/3/4): 73-87.
68 BURG J P, PODLADCHIKOV Y. From buckling to asymmetric folding of the continental lithosphere: numerical modelling and application to the Himalayan syntaxes[J]. Geological Society, London, Special Publications, 2000, 170(1): 219-236.
69 BENDICK R, FLESCH L. A review of heterogeneous materials and their implications for relationships between kinematics and dynamics in continents[J]. Tectonics, 2013, 32(4): 980-992.
70 SCHUELLER S, GUEYDAN F, DAVY P. Mechanics of the transition from localized to distributed fracturing in layered brittle-ductile systems[J]. Tectonophysics, 2010, 484(1/2/3/4): 48-59.
71 LUTH S, WILLINGSHOFER E, SOKOUTIS D, et al. Analogue modelling of continental collision: influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography[J]. Tectonophysics, 2010, 484(1/2/3/4): 87-102.
72 BUROV E, YAMATO P. Continental plate collision, P-T-t-z conditions and unstable vs. stable plate dynamics: insights from thermo-mechanical modelling[J]. Lithos, 2008, 103(1/2): 178-204.
73 MIDTKANDAL I, BRUN J P, GABRIELSEN R H, et al. Control of lithosphere rheology on subduction polarity at initiation: insights from 3D analogue modelling[J]. Earth and Planetary Science Letters, 2013, 361: 219-228.
74 AGOSTINI A, CORTI G, ZEOLI A, et al. Evolution, pattern, and partitioning of deformation during oblique continental rifting: inferences from lithospheric-scale centrifuge models[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11).DOI:10.1029/2009GC002676 .
75 REITER K, KUKOWSKI N, RATSCHBACHER L. The interaction of two indenters in analogue experiments and implications for curved fold-and-thrust belts[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 132-146.
76 SUN M, YIN A, YAN D P, et al. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan Plateau: new insights from analogue experiments[J]. Earth and Planetary Science Letters, 2018, 491: 207-215.
77 SOKOUTIS D, BONINI M, MEDVEDEV S, et al. Indentation of a continent with a built-in thickness change: experiment and nature[J]. Tectonophysics, 2000, 320(3/4): 243-270.
78 FERNÁNDEZ-LOZANO J, GUTIÉRREZ-ALONSO G, WILLINGSHOFER E, et al. Shaping of intraplate mountain patterns: the Cantabrian orocline legacy in Alpine Iberia[J]. Lithosphere, 2019, 11(5): 708-721.
79 MARQUES F O, COBBOLD P R. Effects of topography on the curvature of fold-and-thrust belts during shortening of a 2-layer model of continental lithosphere[J]. Tectonophysics, 2006, 415(1/2/3/4): 65-80.
80 PASTOR-GALAN D, GUTIERREZ-ALONSO G, ZULAUF G, et al. Analogue modeling of lithospheric-scale orocline buckling: constraints on the evolution of the Iberian-Armorican Arc[J]. Geological Society of America Bulletin, 2012, 124(7/8): 1 293-1 309.
81 GUTIERREZ-ALONSO G, MURPHY J B, FERNANDEZ-SUAREZ J, et al. Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle[J]. Geology, 2011, 39(2): 155-158.
82 MURPHY J B, QUESADA C, GUTIÉRREZ-ALONSO G, et al. Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe[J]. Tectonophysics, 2016, 681: 209-219.
83 BERGAMIN J, de VICENTE G, TEJERO R,et al. Cuantificación del desplazamiento dextroso Alpino en la cordillera Ibérica a partir de datos gravimétricos[J]. Geogaceta,1996,20(4):917-920.
84 TAVANI S, QUINTÀ A, GRANADO P. Cenozoic right-lateral wrench tectonics in the Western Pyrenees (Spain): the Ubierna Fault System[J]. Tectonophysics, 2011, 509(3/4): 238-253.
85 CASAS-SAINZ A M, MAESTRO-GONZÁLEZ A. Deflection of a compressional stress field by large-scale basement faults. A case study from the Tertiary Almazán Basin (Spain)[J]. Tectonophysics, 1996, 255(1/2): 135-156.
86 VICENTE G D, VEGAS R, MUÑOZ-MARTÍN A, et al. Oblique strain partitioning and transpression on an inverted rift: the Castilian Branch of the Iberian Chain[J]. Tectonophysics, 2009, 470(3/4): 224-242.
[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 王良书;刘绍文;李成;李华;徐鸣洁;钟锴;韩用兵. 岩石圈热—流变结构与大陆动力学[J]. 地球科学进展, 2004, 19(3): 382-386.
阅读次数
全文


摘要