地球科学进展 ›› 2022, Vol. 37 ›› Issue (2): 111 -119. doi: 10.11867/j.issn.1001-8166.2022.006

综述与评述    下一篇

全球气候变化对干旱区影响分析
陈亚宁 1 , 2( ), 李玉朋 1 , 2, 李稚 1 , 2, 刘永昌 1 , 2, 黄文静 1 , 2, 刘西刚 1 , 2, 冯梅青 1 , 3   
  1. 1.中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学 资源与环境学院,北京 100049
    3.新疆师范大学 地理科学与旅游学院,新疆 乌鲁木齐 830054
  • 收稿日期:2021-10-12 修回日期:2022-01-07 出版日期:2022-02-10
  • 基金资助:
    国家自然科学基金项目“中亚地区干旱变化的区域分异特征及驱动因子研究”(U2003302);中国科学院战略性先导科技专项“塔里木河五源流与干流的水利联系及连通性研究”(XDA20100303)

Analysis of the Impact of Global Climate Change on Dryland Areas

Yaning CHEN 1 , 2( ), Yupeng LI 1 , 2, Zhi LI 1 , 2, Yongchang LIU 1 , 2, Wenjing HUANG 1 , 2, Xigang LIU 1 , 2, Meiqing FENG 1 , 3   

  1. 1.State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China
    2.College of Resources and Environment,University of China Academy of Sciences,Beijing 100049,China
    3.College of Geography and Tourism,Xinjiang Normal University,Urumqi 830054,China
  • Received:2021-10-12 Revised:2022-01-07 Online:2022-02-10 Published:2022-03-08
  • About author:CHEN Yaning (1958-), male, Aksu City, Xinjiang Uygur Autonomous Region, Professor. Research areas include eco-hydrology in arid region. E-mail: chenyn@ms.xjb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Characterization of regional variation and drivers of drought change in Central Asia"(U2003302);The Strategic Priority Research Program of Chinese Academy of Sciences "Hydraulic links and connectivity between the five headwaters of the Tarim River and the main stream"(XDA20100303)

干旱区约占地球陆地面积的41%,养育了世界上超过38%的人口,是大多数发展中国家和贫困人口的聚集地,也是全球气候变化影响和响应最敏感的地区之一,对其气候、水文和生态环境变化开展研究是十分必要的。近几十年来相关研究不少,但结论比较零散,也有很多不一致的地方。基于对国内外文献的分析,归纳梳理了气候变化下干旱区的气候、水文、面积和类型的变化及其这些变化对生态系统的影响。梳理的主要结果如下:干旱区CO2排量约为湿润区的30%,但升温速率却比湿润区高20%~40%。在过去的半个多世纪,干旱区面积增加了约2.61×106 km2,预计21世纪末,全球干旱区面积将继续扩大约5.8×106 km2,占陆地总面积的一半以上。在全球变暖背景下,干旱区中以降水和冰雪融水补给为基础的水资源系统将会更为脆弱,冰、雪等水文要素及水资源构成发生改变,水文波动加大,水资源不确定性加剧。伴随干旱区面积扩大和干旱程度增加,干旱区水资源短缺、水体面积萎缩、生态系统退化、荒漠化程度也随之加剧,未来干旱区社会经济发展和生态安全保障将面临更严峻的挑战。这些归纳梳理所凝练出的一些综合性结论,对政府决策以及未来提出可信明确的科学认识具有一定的参考意义。

Drylands cover about 41% of the Earth's land area, support more than 38% of the world's population, and are home to most of the world's developing and poor populations. Drylands are one of the most sensitive areas to the impacts and responses to global climate change, and it is essential to study the changes in their climate, hydrology and ecological environment. There have been many studies in this area in recent decades, but the conclusions are fragmented and there are many inconsistencies. Based on the analysis of domestic and international literature, this paper summarizes and composes the changes in climate, hydrology, area and type of drylands under climate change and the impacts of these changes on ecosystems. The main results of the combing are as follows. CO2 emissions from dryland are only about 30% of those from humid areas, but the warming rate is 20%~40% higher than that of humid areas. In the past half century, the dryland area has increased by about 2.61×106 km2, and by the end of this century, the global dryland area will continue to expand by about 5.8×106 km2, which will occupy more than half of the total land area. Under the background of global warming, the water resources system based on precipitation and snow melt recharge in drylands will be more fragile, and hydrological elements such as ice and snow and water resources composition will change, hydrological fluctuations will increase, and water resources uncertainty will intensify. Along with the expansion of dryland area and the increase of aridity, the shortage of water resources, shrinkage of water bodies, degradation of ecosystems and desertification in dryland areas will also intensify, and the future socio-economic development and ecological security of dryland areas will face more severe challenges. Some comprehensive conclusions condensed from these inductive combs are of reference significance for governmental decision making and for proposing credible and clear scientific understanding in the future.

中图分类号: 

图1 全球极端干旱区、干旱区、半干旱区、半湿润区及湿润区的分布
Fig. 1 Distribution of hyper-aridaridsemi-ariddry sub-humid and humid regions in the world
图2 不同干旱类型之间的空间转化图
Fig. 2 Global distribution of neighboring dry subtype changes
图3 不同干旱类型在历史时期RCP4.5RCP8.5情境下所占陆地面积的百分比
Fig. 3 Percentage of land area occupied by different dry types in the historical periodRCP4.5 and RCP8.5 scenarios
表1 干旱区和湿润区在 19202015年的升温幅度和 CO2 排放量对比
Table 1 Comparison of warming and CO 2 emissions in dryland and humid areas from 1920-2015
图4 气候变化下干旱区各要素变化
Fig. 4 Changes of various elements in arid areas under climate change
1 CHEN Yaning. An overview of arid region science[M]. Beijing: Science Press, 2021.
陈亚宁. 干旱区科学概论[M]. 北京:科学出版社,2021.
2 HUANG J P, YU H P, DAI A G, et al. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 2017, 7(6): 417-422.
3 ABBOTT B W, BISHOP K, ZARNETSKE J P, et al. Human domination of the global water cycle absent from depictions and perceptions[J]. Nature Geoscience, 2019, 12(7): 533-540.
4 HUANG J, GUAN X, JI F. Enhanced cold-season warming in semi-arid regions[J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5 391-5 398.
5 DAI A G, LAMB P J, TRENBERTH K E, et al. The recent Sahel drought is real[J]. International Journal of Climatology, 2004, 24(11): 1 323-1 331.
6 FENG S, FU Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 10 081-10 094.
7 HUANG J P, YU H P, GUAN X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 166-171.
8 LI Xinzhou, LIU Xiaodong, MA Zhuguo, et al. Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years[J]. Arid Zone Research, 2004, 21(2): 97-103.
李新周, 刘晓东, 马柱国, 等. 近百年来全球主要干旱区的干旱化特征分析[J]. 干旱区研究, 2004, 21(2): 97-103.
9 FINLAYSON M, CRUZ R D, DAVIDSON N, et al. Millennium ecosystem assessment: ecosystems and human well-being: synthesis[M]. Washington, D.C.: Island Press, 2005.
10 YAN Xinyang, ZHANHG Qiang, YAN Xiaomin, et al. An overview characteristic and formation mechanisms in global arid areas[J]. Advances in Earth Science, 2019, 34(8): 826-841.
闫昕旸, 张强, 闫晓敏, 等. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
11 GUAN X D, MA J R, HUANG J P, et al. Impact of oceans on climate change in drylands[J]. Science China: Earth Sciences, 2019, 62(6): 891-908.
12 LI Y, CHEN Y, LI Z. Dry/wet pattern changes in global dryland areas over the past six decades[J]. Global and Planetary Change, 2019, 178: 184-192.
13 DARAMOLA M T, XU M. Recent changes in global dryland temperature and precipitation[J]. International Journal of Climatology, 2021. DOI:10.1002/joc.7301 .
14 CHEN Yaning, LI Zhi, FANG Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
15 LI B F, CHEN Y N, SHI X, et al. Temperature and precipitation changes in different environments in the arid region of northwest China[J]. Theoretical and Applied Climatology, 2013, 112(3): 589-596.
16 HU Z Y, ZHANG C, HU Q, et al. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets[J]. Journal of Climate, 2014, 27(3): 1 143-1 167.
17 LI B F, CHEN Y N, SHI X. Why does the temperature rise faster in the arid region of northwest China?[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D16). DOI:10.1029/2012jd017953 .
18 CHEN Yaning, et al. Research on water resources in arid region of northwest China[M]. Beijing: Science Press, 2014.
陈亚宁, 等. 中国西北干旱区水资源研究[M]. 北京:科学出版社,2014.
19 CHEN Y N, LI W H, DENG H J, et al. Changes in Central Asia's water tower: past, present and future[J]. Scientific Reports, 2016,6:35458.
20 KANG S C, GUO W Q, ZHONG X Y, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143-152.
21 MOTE P W, LI S, LETTENMAIER D P, et al. Dramatic declines in snowpack in the western US[J]. Climate and Atmospheric Science, 2018, 1(1): 2.
22 HUNING L S, AGHAKOUCHAK A. Global snow drought hot spots and characteristics[J]. Proceedings of the National Academy of Sciences, 2020, 117(33): 201915921.
23 LI Y, CHEN Y, WANG F, et al. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA's NEX-GDDP high-resolution daily downscaled dataset[J]. Environmental Research Letters, 2020, 15(10): 104040.
24 SMITH T, BOOKHAGEN B. Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009) [J]. Science Advances, 2018, 4(1): e1701550.
25 LI Z, CHEN Y N, LI Y P, et al. Declining snowfall fraction in the alpine regions, Central Asia[J]. Scientific Reports, 2020, 10: 3476.
26 GUO D, SUN J, LI H, et al. Attribution of historical near-surface permafrost degradation to anthropogenic greenhouse gas warming[J]. Environmental Research Letters, 2020, 15(8): 1-9.
27 FYFE J C, DERKSEN C, MUDRYK L, et al. Large near-term projected snowpack loss over the western United States[J]. Nature Communications, 2017, 8: 14996.
28 CHEN X, YANG Y, MA Y, et al. Distribution and attribution of terrestrial snow cover phenology changes over the Northern Hemisphere during 2001-2020[J]. Remote Sensing, 2021, 13(9):1843.
29 CHEN Y N, LI Z, FAN Y T, et al. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China[J]. Environmental Research, 2015,139:11-19.
30 BARNETT T P, ADAM J C, LETTENMAIER D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7 066): 303-309.
31 CHEN Yaning, LI Zhi, FAN Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of northwest China[J]. Acta Geographica Sinica, 2014, 69(9): 1 295-1 304.
陈亚宁, 李稚, 范煜婷,等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9):1 295-1 304.
32 CHEN Y N, LI B F, LI Z, et al. Water resource formation and conversion and water security in arid region of northwest China[J]. Journal of Geographical Sciences, 2016,26(7): 939-952.
33 SHEN Yongping, SU Hongchao, WANG Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (I): hydrological effects[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 513-527.
沈永平,苏宏超,王国亚,等.新疆冰川、积雪对气候变化的响应(I):水文效应[J].冰川冻土, 2013, 35(3): 513-527.
34 CHEN Y N, LI W H, FANG G H, et al. Hydrological modeling in glacierized catchments of Central Asia—status and challenges[J]. Hydrology and Earth System Sciences, 2017, 21(2): 669-684.
35 CHEN Yaning, YANG Qing, LUO Yi, et al. Ponder on the issues of water resources in the arid region of the northwest[J]. China Arid Land Geography,2012,35(1):1-9.
陈亚宁,杨青,罗毅,等.西北干旱区水资源问题研究思考[J].干旱区地理,2012,35(1):1-9.
52 PAN N, FENG X, FU B, et al. Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends[J]. Remote Sensing of Environment, 2018, 214: 59-72.
53 CUNHA A, ALVALÁ R, NOBRE C, et al. Monitoring vegetative drought dynamics in the Brazilian semiarid region[J]. Agricultural and Forest Meteorology, 2015, 214: 494-505.
54 LI Z, CHEN Y, LI W, et al. Potential impacts of climate change on vegetation dynamics in Central Asia[J]. Journal of Geophysical Research Atmospheres, 2015,120(24): 1 234-1 236.
55 PARK T, GANGULI S, TØMMERVIK H, et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data[J]. Environmental Research Letters, 2016, 11(8): 084001.
56 LI Z, CHEN Y N, ZHANG Q F, et al. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia[J]. Journal of Hydrology, 2020, 590: 125355.
57 CIAIS P, REICHSTEIN M, VIOVY N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437(7 058): 529-533.
58 COOK B I, PAU S. A global assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3g dataset[J]. Remote Sensing, 2013, 5(5): 2 492-2 512.
59 LI Y, CHEN Y, SUN F, et al. Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia[J]. Ecological Indicators, 2021, 129(6 397): 107912.
36 CHEN Yaning, WANG Huaijun, WANG Zhicheng,et al. Characteristics of extreme climatic/hydrological events in the arid region of northwestern China[J]. Arid Land Geography, 2017,40(1):1-9.
陈亚宁,王怀军,王志成,等.西北干旱区极端气候水文事件特征分析[J].干旱区地理, 2017,40(1):1-9.
37 WANG H J, CHEN Y N, LI W H. Characteristics in streamflow and extremes in the Tarim River, China: trends, distribution and climate linkage[J]. International Journal of Climatology, 2015, 35(5): 761-776.
38 ZOU Z, XIAO X, DONG J, et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016[J]. Proceedings of the National Academy of Sciences, 2018, 115(15): 3 810-3 815.
39 WANG X, XIAO X, ZOU Z, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nature Communications, 2020,11(1): 3471.
40 HUANG W, DUAN W, CHEN Y. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes[J]. Science of the Total Environment, 2021, 784: 147193.
41 SAMY A R. A desertification impact on Siwa Oasis: present and future challenges[J]. Research Journal of Agriculture and Biological Sciences, 2010,6(6): 791-805.
42 GOLDEWIJK K K, BEUSEN A, DOELMAN J, et al. Anthropogenic land use estimates for the Holocene-HYDE 3.2[J]. Earth System Science Data, 2017, 9(2): 27-953.
43 AMIRASLANI F, DRAGOVICH D. Combating desertification in Iran over the last 50 years: an overview of changing approaches[J]. Journal of Environmental Management, 2011, 92(1): 1-13.
44 BESTELMEYER B T, OKIN G S, DUNIWAY M C, et al. Desertification, land use, and the transformation of global drylands[J]. Frontiers in Ecology and the Environment, 2015,13(1): 28-36.
45 YI C X, WEI S H, HENDREY G. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration[J]. Scientific Reports, 2014, 4: 1-6.
46 EVAN A T. Surface winds and dust biases in climate models[J]. Geophysical Research Letters, 2018, 45(2): 1 079-1 085.
47 EVAN A T, FLAMANT C, FIEDLER S, et al. An analysis of aeolian dust in climate models[J]. Geophysical Research Letters, 2014, 41(16): 5 996-6 001.
48 LI Z, CHEN Y N, FANG G H, et al. Multivariate assessment and attribution of droughts in Central Asia[J]. Scientific Reports, 2017, 7(1): 1-12.
49 WANG L, ODORICO P D, EVANS J P, et al. Dryland ecohydrology and climate change: critical issues and technical advances[J]. Hydrology and Earth System Sciences, 2012, 16(8): 2 585-2 603.
50 ZHENG Yi, ZHANG Li, ZHOU Yu, et al. Vegetation chang and its driving factors in global drylands during the period of 1982-2012[J]. Arid Zone Research, 2017, 34(1): 59-66.
郑艺, 张丽, 周宇, 等. 1982—2012年全球干旱区植被变化及驱动因子分析[J]. 干旱区研究, 2017, 34(1): 59-66.
51 YUAN W P, ZHENG Y, PIAO S L, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): 1396.
[1] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[2] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[3] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[4] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[5] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[6] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[7] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[8] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[9] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[10] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[11] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[12] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[13] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[14] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[15] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
阅读次数
全文


摘要