地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 470 -482. doi: 10.11867/j.issn.1001-8166.2023.016

综述与评述 上一篇    下一篇

微生物介导的热融湖碳循环关键过程研究进展
许茜 1 , 2( ), 效存德 3( ), 冯雅茹 3, 杜志恒 1, 王磊 4, 魏志强 4   
  1. 1.中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室,甘肃 兰州 730000
    2.中国科学院 大学,北京 100049
    3.北京师范大学地表过程与资源生态国家重点实验室,北京 100875
    4.北京师范大学地表过程与资源生态国家重点实验室珠海基地,广东 珠海 519087
  • 收稿日期:2022-10-17 修回日期:2022-12-29 出版日期:2023-05-10
  • 通讯作者: 效存德 E-mail:xuqian@nieer.ac.cn;cdxiao@bnu.edu.cn
  • 基金资助:
    国家重点研发计划项目“热喀斯特地貌形成对温室气体通量的影响及其生物学机理”(2022YFF0801903);中国科学院青年创新促进会专项(2020419)

Advances in Microbe Mediated Key Processes of the Carbon Cycle in Thermokarst Lakes

Qian XU 1 , 2( ), Cunde XIAO 3( ), Yaru FENG 3, Zhiheng DU 1, Lei WANG 4, Zhiqiang WEI 4   

  1. 1.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University Chinese Academy of Sciences, Beijing 100049, China
    3.State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    4.Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai Guangdong 519087, China
  • Received:2022-10-17 Revised:2022-12-29 Online:2023-05-10 Published:2023-05-10
  • Contact: Cunde XIAO E-mail:xuqian@nieer.ac.cn;cdxiao@bnu.edu.cn
  • About author:XU Qian (1992-), female, Lanzhou City, Gansu Province, Ph.D student. Research area includes observation on carbon dynamics in thermokarst lakes. E-mail: xuqian @nieer.ac.cn
  • Supported by:
    the National Key Research and Development Program of China “Effects of thermokarst landforms on greenhouse gas fluxes and their biological mechanisms”(2022YFF0801903);The Youth Innovation Promotion Association, Chinese Academy of Sciences(2020419)

极地超常的变暖引起多年冻土不断退化并形成热融湖,该过程释放温室气体与气候变暖形成正反馈。微生物在碳循环不同环节均发挥着重要作用,理解热融湖中微生物对碳循环的调控机制,对于应对未来气候变化具有重要意义。综述了热融湖微生物参与的关键碳循环过程:梳理了热融湖形成过程和形成后微生物群落组成与分布;对有机碳分解、产甲烷和甲烷氧化等过程中涉及的主要微生物类群进行了总结;凝练了微生物对碳循环的调控机制及受环境变化的影响机制与要素。基于已有研究,得出如下认识: 多年冻土融化形成热融湖主要以陆生有机质为主,一些营养物质如磷酸盐、植物纤维素和亮氨酸残基等生物聚合物从陆地进入水体。 在多年冻土融化形成热融湖过程中,随着温度和通气条件的改善,有机质及各种生物聚合物可利用性增加了微生物功能基因多样性,提高了微生物对有机碳的分解潜势。温度、底物、溶解氧等和微生物群落的变化引起微生物代谢途径等的改变,从而影响了甲烷产生、甲烷氧化及固碳等过程,最终影响碳循环。 为了加深对热融湖中微生物介导碳循环过程的理解,提出了未来研究的方向:借助宏基因组技术及室内培养实验更加清晰地揭示微生物对碳循环各个过程的调节机制,加强不同环境条件下热融湖碳排放的野外观测,探索利用微生物来减轻气候变化的负面影响。

As a result of global warming, the melting of ice-rich permafrost causes the ground to collapse, thereby creating thermokarst lakes, while the greenhouse effect caused by the concurrent release of greenhouse gases results in a positive feedback with climate warming. Microorganisms play important roles in various aspects of the carbon cycle. Understanding the mechanisms of microbial regulation of the carbon cycle in thermally melting lakes is of great significance for coping with future climate change. Therefore, by combining previous studies, this paper first elucidates the formation process of thermokarst lakes and the microorganisms inhabiting these special habitats; subsequently, the main microorganisms involved in organic carbon decomposition, methane production, and methane oxidation, and the regulation mechanisms and influencing factors are analyzed in detail. Based on this analysis, we conclude the following: The organic matter in thermokarst lakes originates from the land, while some nutrients, such as phosphates, plant biopolymers, and leucine residues, are also transported from the land to the water. With improvements in temperature and aeration conditions, the availability of most nutrients increases the genetic diversity of microorganisms and promotes their roles in organic carbon decomposition. Changes in temperature, substrate, dissolved oxygen, and microbial community affect the processes of methane production, methane oxidation, and carbon sequestration, thereby affecting the carbon cycle. Some deficiencies in previous studies are summarized, and a new research perspective is proposed to deepen our understanding of microbial involvement in the carbon cycle in thermokarst lakes. With the help of metagenomic technology and incubation, the regulatory mechanisms of microbes for the carbon cycle can be revealed more clearly, and field observations of carbon emissions from thermokarst lakes under different environmental conditions can be strengthened. Exploring the use of microbes for mitigating the negative effects of climate change should be based on the above fundamental research.

中图分类号: 

图1 气候变暖引起多年冻土退化示意(据参考文献[ 25 - 26 ]修改)
Fig. 1 Permafrost degradation derived warming feedbackmodified after references25-26])
图2 热融湖形成过程(据参考文献[ 27 ]修改)
(a)连续多年冻土区主要为冰楔;(b)冰楔融化,地面凹陷;(c)上层多年冻土融化,小湖塘不断汇聚形成大的湖塘;(d)热融湖塘发育成熟,湖泊水深达到最大;(e)不连续多年冻土区主要为富冰泥炭丘或石质冻胀丘;(f)和(g)富冰土丘持续融化,积水聚集,形成洼地,直到完全融化时形成成熟热融湖塘;(h)湖底部存在淤泥或者黏土隔水层,湖泊稳定存在
Fig. 2 Formation and development of a thermokarst lakemodified after reference 27 ])
(a) Ice-wedge terrains dominate the continuous permafrost; (b) Thermokarst lake inception usually begins with water pooling above low-center polygons and melting ice wedges; (c) These small ponds finally merge to form lakes, (d) which further deepen and develop laterally by thermo-erosion, leading to larger and deeper mature lakes with an underlying talik; (e) Ice-rich cryogenic mounds (palsas and lithalsas) are widespread in discontinuous permafrost; (f) and (g) The melting of ice lenses leads to surface subsidence and water pooling in topographic depressions; (h) Once permafrost has completely thawed, a mature thermokarst pond/lake surrounded by a peripheral ridge can stabilize
表1 热融湖中微生物适应机制
Table 1 The adaptation mechanism of microorganisms in the thermokarst lake
图3 微生物驱动的碳循环过程(据参考文献[ 48 ]修改)
Fig. 3 Carbon cycle driven by microorganismsmodified after reference 48 ])
图4 多年冻土区热融湖中微生物参与的甲烷循环过程(据参考文献[ 11 ]修改)
Fig. 4 Thermokarst lake methane cycling in the permafrost regionsmodified after reference 11 ])
表2 主要产甲烷微生物
Table 2 Methane-producing microorganisms
表3 甲烷好氧氧化菌特征
Table 3 Characteristics of methanotrophic bacteria
表4 常见甲烷厌氧氧化类型
Table 4 Common types of methane anaerobic oxidation
1 RAN Youhua, LI Xin. Progress,challenges and opportunities of permafrost mapping in China [J]. Advances in Earth Science,2019,34(10):1 015-1 027.
冉有华,李新.中国多年冻土制图:进展、挑战与机遇[J]地球科学进展,2019,34(10):1 015-1 027.
2 GRUBER S. Derivation and analysis of a high-resolution estimate of global permafrost zonation[J]. The Cryosphere, 2012, 6(1):221-233.
3 FOX-KEMPER B, HEWITT H, XIAO C, et al. Ocean, cryosphere and sea level change[C]// Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:1 211-1 362.
4 OBU J, WESTERMANN S, BARTSCH A, et al. Northern hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale [J]. Earth-Science Reviews, 2019, 193:299-316.
5 PENG X, ZHANG T, FRAUENFELD O W, et al. Permafrost response to land use and land cover change in the last millennium across the northern hemisphere [J]. Land Degradation & Development, 2020, 31(14):1 823-1 836.
6 HUGELIUS G, STRAUSS J, ZUBRZYCKI S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps [J]. Biogeosciences, 2014, 11(23):6 573-6 593.
7 SCHUUR E A G, VOGEL J G, CRUMMER K G,et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra [J]. Nature, 2009, 459(7 246):556-559.
8 BISKABORN B K, SMITH S L, NOETZLI J, et al. Permafrost is warming at a global scale[J]. Nature Communications, 2019, 10(1): 1-11.
9 KARJALAINEN O, LUOTO M, AALTO J, et al. High potential for loss of permafrost landforms in a changing climate [J]. Environmental Research Letters, 2020, 15(10). DOI: 10.1088/1748-9326/abafd5 .
10 YOKOHATA T, SAITO K, TAKATA K, et al. Model improvement and future projection of permafrost processes in a global land surface model [J]. Progress in Earth and Planetary Science, 2020, 7(1). DOI:10.1186/s40645-020-00380-w .
11 ’T ZANDT M H IN, LIEBNER S, WELTE C U. Roles of thermokarst lakes in a warming world [J]. Trends in Microbiology, 2020, 28(9): 769-779.
12 CANADELL J G, MONTEIRO P M S, COSTA M H, et al. Global carbon and other biogeochemical cycles and feedbacks[C]// Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:673-816.
13 QIN Dahe, YAO Tandong, DING Yongjian, et al. Glossary of cryosphere science[M]. Beijing:China Meteorological Press, 2014.
秦大河, 姚檀栋,丁永健,等. 冰冻圈科学辞典[M].北京:中国气象出版社, 2014.
14 ZIMOV S A, SCHUUR E A G, CHAPIN F S III. Permafrost and the global carbon budget [J]. Science, 2006, 312:1 612-1 613.
15 OLIVA M, FRITZ M. Permafrost degradation on a warmer Earth: challenges and perspectives [J]. Current Opinion in Environmental Science & Health, 2018, 5:14-18.
16 ROIHA T, LAURION I, RAUTIO M. Carbon dynamics in highly heterotrophic subarctic thaw ponds [J]. Biogeosciences, 2015, 12(23): 7 223-7 237.
17 WEN Z, YANG Z, YU Q H, et al. Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method [J]. Cold Regions Science and Technology, 2016, 121: 84-92.
18 WINKEL M, SEPULVEDA-JAUREGUI A, MARTINEZ-CRUZ K, et al. First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes [J]. Environmental Research Communications, 2019, 1(2): 1-12.
19 TAKAKURA H, IIJIMA Y, FEDOROV A,et al. Permafrost and culture: global warming and the republic of Sakha (Yakutia), Russian Federation [R]. Center for Northeast Asian,2021.
20 MU Cuicui. Thermokarst terrains change landscape and Earth surface processes [J]. Chinese Journal of Nature, 2020, 42(5): 386-392.
牟翠翠. 热喀斯特改变多年冻土区景观和地表过程 [J]. 自然杂志, 2020, 42(5): 386-392.
21 JORGENSON M T, ROMANOVSKY V, HARDEN J, et al. Resilience and vulnerability of permafrost to climate change—this article is one of a selection of papers from the dynamics of change in Alaska’s Boreal Forests: resilience and vulnerability in response to climate warming [J]. Canadian Journal of Forest Research, 2010, 40(7): 1 219-1 236.
22 MATHEUS CARNEVALI P B. Microbial ecology, biogeochemistry, and signatures of life at low temperature in Arctic thermokarst lake sediments and high sierra snow fields [D]. Reno, NV, USA: University of Nevada (Reno), 2015.
23 GROSSE G, JONES B, ARP C. Thermokarst lakes, drainage, and drained basins [J]. Treatise on Geomorphology, 2013, 8: 325-353.
24 IPCC. Climate change 2021: contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021.
25 PAYANDI-ROLLAND D, SHIROKOVA L, TESFA M, et al. Dissolved organic matter biodegradation along a hydrological continuum in permafrost peatlands [J]. Science of the Total Environment, 2020, 749. DOI: 10.1016/j.scitotenv.2020.141463 .
26 MU C C, ABBOTT B W, NORRIS A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau [J]. Earth-Science Reviews, 2020, 211. DOI: 10.1016/j.earscirev.2020.103433 .
27 BOUCHARD F, MACDONALD L A, TURNER K W, et al. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution [J]. Arctic Science, 2016, 3(2): 91-117.
28 WEI Z Q, DU Z H, WANG L, et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau [J]. Earth and Space Science, 2021, 8. DOI:10.1029/2021EA001950 .
29 CAVICCHIOLI R, THOMAS T, CURMI P M G. Cold stress response in Archaea [J]. Extremophiles, 2000, 4(6): 321-331.
30 MARGESIN R, SCHINNER F, MARX J C, et al. Limits for microbial life at subzero temperatures[M]// Psychrophiles: from biodiversity to biotechnology. Berlin/Heidelberg, Germany: Springer, 2008.
31 PIKUTA E V, HOOVER R B, TANG J. Microbial extremophiles at the limits of life [J]. Critical Reviews in Microbiology, 2007, 33(3): 183-209.
32 LIU Guangxiu, CHEN Tuo, LI Shiweng, et al. Extreme environmental microbiology [M]. Beijing: Science Press, 2016: 90-98.
刘光琇, 陈拓, 李师翁, 等. 极端环境微生物学 [M]. 北京: 科学出版社, 2016: 90-98.
33 CRUMP B C, AMARAL-ZETTLER L A, KLING G W. Microbial diversity in Arctic freshwaters is structured by inoculation of microbes from soils [J]. ISME Journal, 2012, 6(9): 1 629-1 639.
34 VONK J E, TANK S E, BOWDEN W B, et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems [J]. Biogeosciences, 2015, 12(23): 7 129-7 167.
35 FIERER N, BRADFORD M A, JACKSON R B. Toward an ecological classification of soil bacteria [J]. Ecology, 2007, 88(6): 1 354-1 364.
36 MAKONDE H M, MWIRICHIA R, OSIEMO Z, et al. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils [J]. SpringerPlus, 2015, 4: 471. DOI: 10.1186/s40064-015-1262-6 .
37 XIAN Wendong, ZHANG Xiaotong, LI Wenjun. Research status and prospect on bacterial Phylum Chloroflexi [J]. Acta Microbiologica Sinica, 2020, 60(9): 1 801-1 820.
鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望 [J]. 微生物学报, 2020, 60(9): 1 801-1 820.
38 LIU F T, KOU D, CHEN Y L, et al. Altered microbial structure and function after thermokarst formation [J]. Global Change Biology, 2021, 27(4): 823-835.
39 WU X D, XU H Y, LIU G M, et al. Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau [J]. BMC Ecology, 2018, 18(1): 27. DOI:10.1186/s12898-018-0183-y .
40 XUE K, YUAN M M, SH Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming [J]. Nature Climate Change, 2016, 6(6): 595-600.
41 NEGANDHI K, LAURION I, LOVEJOY C. Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic [J]. Polar Biology, 2014, 37(11): 1 669-1 683.
42 de JONG A E E, ’T ZANDT M H IN, MEISEL O H, et al. Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments [J]. Environmental Microbiology, 2018, 20(12): 4 314-4 327.
43 NEGANDHI K, LAURION I, LOVEJOY C. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds [J]. FEMS Microbiology Ecology, 2016, 92(8). DOI: 10.1093/femsec/fiw117 .
44 XU Q, DU Z H, WANG L, et al. The role of thermokarst lake expansion in altering the microbial community and methane cycling in beiluhe basin on Tibetan Plateau [J]. Microorganisms, 2022, 10(8). DOI: 10.3390/microorganisms10081620 .
45 VIGNERON A, CRUAUD P, BHIRY N, et al. Microbial community structure and methane cycling potential along a thermokarst pond-peatland continuum [J]. Microorganisms, 2019, 7(11). DOI: 10.3390/microorganisms7110486 .
46 CARNEVALI P B M, HERBOLD C W, HAND K P, et al. Distinct microbial aassemblage structure and archaeal diversity in sediments of Arctic thermokarst lakes differing in methane sources[J]. Frontiers in Microbiology, 2018, 9. DOI: 10.3389/fmicb.2018.01192 .
47 HESLOP J K, ANTHONY K M, WALTER WINKEL M, et al. A synthesis of methane dynamics in thermokarst lake environments[J]. Earth-Science Reviews, 2020, 210. DOI: 10.1016/j.earscirev.2020.103365 .
48 LIU Yangying, WANG Shang, LI Shuzhen, et al. Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1 676-1 689.
刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展 [J]. 微生物学通报, 2017, 44(7): 1 676-1 689.
49 WAUTHY M, RAUTIO M, CHRISTOFFERSEN K S, et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw [J]. Limnology and Oceanography Letters, 2018, 3(3): 186-198.
50 COOLEN M J L, van de GIESSEN J, ZHU E Y, et al. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw [J]. Environmental Microbiology, 2011, 13(8): 2 299-2 314.
51 MACKELPRANG R, WALDROP M P, DeANGELIS K M, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw [J]. Nature, 2011, 480(7 377): 368-371.
52 HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes [J]. Nature, 2015, 521(7 551): 208-212.
53 MONTEUX S, WEEDON J T, BLUME-WERRY G, et al. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration [J]. ISME Journal, 2018, 12(9): 2 129-2 141.
54 CHEN Y L, LIU F T, KANG L Y, et al. Large-scale evidence for microbial response and associated carbon release after permafrost thaw [J]. Global Change Biology, 2021, 27(14): 3 218-3 229.
55 PEURA S, WAUTHY M, SIMONE D,et al. Ontogenic succession of thermokarst thaw ponds is linked to dissolved organic matter quality and microbial degradation potential [J]. Limnology and Oceanography, 2020, 65():S248-S263.
56 ROSSI P G, LAURION I, LOVEJOY C. Distribution and identity of Bacteria in subarctic permafrost thaw ponds [J]. Aquatic Microbial Ecology, 2013, 69(3):231-245.
57 DESHPANDE B N, MACINTYRE S, MATVEEV A, et al. Oxygen dynamics in permafrost thaw lakes: anaerobic bioreactors in the Canadian subarctic [J]. Limnology and Oceanography, 2015, 60(5): 1 656-1 670.
58 LAURION I, MLADENOV N. Dissolved organic matter photolysis in Canadian Arctic thaw ponds [J]. Environmental Research Letters, 2013, 8(3). DOI: 10.1088/1748-9326/8/3/035026 .
59 DESHPANDE B N, MAPS F, MATVEEV A, et al. Oxygen depletion in subarctic peatland thaw lakes [J]. Arctic Science, 2017, 3(2): 406-428.
60 GROSSE G, HARDEN J, TURETSKY M, et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4). DOI: 10.1029/2010JG001507 .
61 HAYES D J, KICKLIGHTER D W, MCGUIRE A D, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange [J]. Environmental Research Letters, 2014, 9(4). DOI: 10.1088/1748-9326/9/4/045005 .
62 LAWRENCE D M, KOVEN C D, SWENSON S C, et al. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions [J]. Environmental Research Letters, 2015, 10(9). DOI: 10.1088/1748-9326/10/9/094011 .
63 CONRAD R. Control of microbial methane production in wetland rice fields [J]. Nutrient Cycling in Agroecosystems, 2002, 64(1): 59-69.
64 FANG Xiaoyu, LI Jiabao, RUI Junpeng, et al. Research progress in biochemical pathways of methanogenesis [J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9.
方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展 [J]. 应用与环境生物学报, 2015, 21(1): 1-9.
65 HERSHEY A E, NORTHINGTON R M, WHALEN S C. Substrate limitation of sediment methane flux, methane oxidation and use of stable isotopes for assessing methanogenesis pathways in a small arctic lake [J]. Biogeochemistry, 2014, 117(2): 325-336.
66 KOTSYURBENKO O R. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems [J]. FEMS Microbiology Ecology, 2005, 53(1): 3-13.
67 LIEBNER S, GANZERT L, KISS A, et al. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost [J]. Frontiers in Microbiology, 2015, 6. DOI: 10.3389/fmicb.2015.00356 .
68 MCCALLEY C K, WOODCROFT B J, HODGKINS S B, et al. Methane dynamics regulated by microbial community response to permafrost thaw [J]. Nature, 2014, 514(7 523): 478-481.
69 MONDAV R, WOODCROFT B J, KIM E H, et al. Discovery of a novel methanogen prevalent in thawing permafrost [J]. Nature Communications, 2014, 5(1): 1-7.
70 WAGNER D, LIPSKI A, EMBACHER A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality [J]. Environmental Microbiology, 2005, 7(10): 1 582-1 592.
71 CARNEVALI P B M, ROHRSSEN M, WILLIAMS M R, et al. Methane sources in Arctic thermokarst lake sediments on the North Slope of Alaska [J]. Geobiology, 2015, 13(2): 181-197.
72 CREVECOEUR S, VINCENT W F, LOVEJOY C. Environmental selection of planktonic methanogens in permafrost thaw ponds [J]. Scientific Reports, 2016, 6(1): 1-10.
73 LIDSTROM M E, SOMERS L. Seasonal study of methane oxidation in lake Washington [J]. Applied and Environmental Microbiology, 1984, 47(6): 1 255-1 260.
74 KALLISTOVA A S, SAVVICHEV A S, RUSANOV I I, et al. Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle [J]. Microbiology, 2019, 88(6): 649-661.
75 LOFTON D D, WHALEN S C, HERSHEY A E. Vertical sediment distribution of methanogenic pathways in two shallow Arctic Alaskan lakes [J]. Polar Biology, 2015, 38(6): 815-827.
76 BOUCHARD F, LAURION I, PRESKIENIS V,et al. Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut) [J]. Biogeosciences, 2015, 12(23):7 279-7 298.
77 BLODAU C, REES R, FLESSA H, et al. A snapshot of CO2 and CH4 evolution in a thermokarst pond near Igarka, northern Siberia [J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G3). DOI: 10.1029/2007JG000652 .
78 ALLEN D T, TORRES V M, THOMAS J, et al. Measurements of methane emissions at natural gas production sites in the United States [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17 768-17 773.
79 PEETERS F, HOFMANN H. Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes [J]. Nature Communications, 2021, 12(1):1-5.
80 SINGLETON C M, MCCALLEY C K, WOODCROFT B J, et al. Methanotrophy across a natural permafrost thaw environment [J]. ISME Journal, 2018, 12(10): 2 544-2 558.
81 BORREL G, JÉZÉQUEL D, BIDERRE-PETIT C, et al. Production and consumption of methane in freshwater lake ecosystems [J]. Research in Microbiology, 2011, 162(9): 832-847.
82 MARTINEZ-CRUZ K, SEPULVEDA-JAUREGUI A, WALTER A K, et al. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan Lakes [J]. Biogeosciences, 2015, 12(15): 4 595-4 606.
83 van WINDEN J F, REICHART G J, MCNAMARA N P, et al. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment [J]. PLoS ONE, 2012, 7(6). DOI:10.1371/journal.pone.0039614 .
84 LIEBNER S, ZEYER J, WAGNER D, et al. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra [J]. Journal of Ecology, 2011, 99(4): 914-922.
85 OSUDAR R, LIEBNER S, ALAWI M, et al. Methane turnover and methanotrophic communities in Arctic aquatic ecosystems of the Lena Delta, Northeast Siberia [J]. FEMS Microbiology Ecology, 2016, 92(8). DOI: 10.1093/femsec/fiw116 .
86 HE R, WOOLLER M J, POHLMAN J W, et al. Shifts in identity and activity of methanotrophs in Arctic lake sediments in response to temperature changes [J]. Applied and Environmental Microbiology, 2012, 78(13): 4 715-4 723.
87 CREVECOEUR S, VINCENT W F, COMTE J, et al. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds[J]. PLoS ONE, 2017, 12(11). DOI: 10.1371/journal.pone.0188223.eCollection 2017 .
88 GRAEF C, HESTNES A G, SVENNING M M, et al. The active methanotrophic community in a wetland from the High Arctic [J]. Environmental Microbiology Reports, 2011, 3(4): 466-472.
89 LIEBNER S, RUBLACK K, STUEHRMANN T, et al. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia [J]. Microbial Ecology, 2009, 57(1): 25-35.
90 TVEIT A, SCHWACKE R, SVENNING M M, et al. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms [J]. ISME Journal, 2013, 7(2): 299-311.
91 CREVECOEUR S, VINCENT W F, COMTE J, et al. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems [J]. Frontiers in Microbiology, 2015, 6. DOI: 10.3389/fmicb.2015.00192 .
92 COMTE J, LOVEJOY C, CREVECOEUR S, et al. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes [J]. Biogeosciences, 2016, 13(1): 175-190.
93 DUNFIELD P F, YURYEV A, SENIN P, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia [J]. Nature, 2007, 450(7 171): 879-882.
94 McDONALD I R, BODROSSY L, CHEN Y, et al. Molecular ecology techniques for the study of aerobic methanotrophs [J]. Applied and Environmental Microbiology, 2008, 74(5): 1 305-1 315.
95 SEMRAU J D, DiSPIRITO A A, YOON S. Methanotrophs and copper[J]. FEMS Microbiology Reviews, 2010, 34(4): 496-531.
96 TIMMERS P H A, WELTE C U, KOEHORST J J, et al. Reverse methanogenesis and respiration in methanotrophic Archaea [J]. Archaea, 2017. DOI: 10.1155/2017/1654237 .
97 WELTE C U, RASIGRAF O, VAKSMAA A, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane [J]. Environmental Microbiology Reports, 2016, 8(6): 941-955.
98 ETTWIG K F, BUTLER M K, PASLIER D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7 288): 543-548.
99 AROMOKEYE D A, KULKARNI A C, ELVERT M, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments [J]. Frontiers in Microbiology, 2020, 10. DOI: 10.3389/fmicb.2019.03041 .
100 KAO-KNIFFIN J, WOODCROFT B J, CARVER S M, et al. Archaeal and bacterial communities across a chronosequence of drained lake basins in Arctic Alaska [J]. Scientific Reports, 2015, 5(1): 1-12.
101 ETTWIG K F, ZHU B L, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12 792-12 796.
102 CAI C, LEU A O, XIE G J, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction [J]. ISME Journal, 2018, 12(8): 1 929-1 939.
103 XIAO X, ZHOU Q Z, FU S Y, et al. Petrographical and geochemical signatures linked to Fe/Mn reduction in subsurface marine sediments from the hydrate-bearing area, Dongsha, the South China Sea[J]. Minerals, 2019, 9(10). DOI:10.3390/min9100624 .
104 HAROON M F, HU S H, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage [J]. Nature, 2013, 500(7 464): 567-570.
105 LEU A O, CAI C, MCILROY S J, et al. Anaerobic methane oxidation coupled to Manganese reduction by members of the Methanoperedenaceae [J]. ISME Journal, 2020, 14(4): 1 030-1 041.
106 WINKEL M, MITZSCHERLING J, OVERDUIN P P, et al. Anaerobic methanotrophic communities thrive in deep submarine permafrost [J]. Scientific Reports, 2018, 8(1): 1-13.
107 SHCHERBAKOVA V, YOSHIMURA Y, RYZHMANOVA Y, et al. Archaeal communities of Arctic methane-containing permafrost [J]. FEMS Microbiology Ecology, 2016, 92(10). DOI:10.1093/femsec/fiw135 .
108 ZHAO Yunduo, HU Xia, YANG Zhiguang, et al. Research progress on effects of thermokarst lakes on soil carbon and microbiao community [J] Bulletin of Soil and Water Conservation, 2022,42(3):390-396.
赵云朵, 胡霞, 杨志广,等. 热喀斯特湖对土壤碳和微生物的影响研究进展 [J]. 水土保持通报 2022,42(3):390-396.
109 ARLEN-POULIOT Y, BHIRY N. Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Québec, Canada [J]. The Holocene, 2005, 15(3): 408-419.
110 TANG Yang, LIU Yongchao, YANG Jian, et al. Gene diversity involved in kalvin pathway of carbon fixation and its response to environmental variables in surface sediments of the northern Qinghai-Tibetan Plateau lakes [J]. Earth Science, 2018, 43(): 19-30.
唐阳, 刘永超, 杨渐, 等. 青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素 [J]. 地球科学, 2018, 43(): 19-30.
111 ZHAO C C, GUPTA V V S R, DEGRYSE F, et al. Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils [J]. Biology and Fertility of Soils, 2017, 53(2): 159-169.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[6] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[7] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[8] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[9] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[10] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[11] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[12] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[13] 张茂亮,郭正府,成智慧,张丽红,郭文峰. 火山区温室气体排放研究进展[J]. 地球科学进展, 2011, 26(12): 1235-1247.
[14] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[15] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
阅读次数
全文


摘要