地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 453 -469. doi: 10.11867/j.issn.1001-8166.2023.018

综述与评述 上一篇    下一篇

硅质岩的成因与沉积环境及其在重建洋板块地层中的应用
张立杨 1 , 2( )   
  1. 1.北京大学地球与空间科学学院,北京 100871
    2.河北省战略性关键矿产资源重点实验室,河北地质大学,河北 石家庄 050031
  • 收稿日期:2022-11-24 修回日期:2023-04-04 出版日期:2023-05-10
  • 基金资助:
    国家重点研发计划项目“北方东部复合造山成矿系统深部结构与成矿过程”(2017YFC0601302);河北省战略性关键矿产资源重点实验室基金项目(HGU-SCMR2132)

Origin and Depositional Environment of Cherts and Their Application in Reconstructing Ocean Plate Stratigraphy

Liyang ZHANG 1 , 2( )   

  1. 1.School of Earth and Space Sciences, Peking University, Beijing 100871, China
    2.Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, China
  • Received:2022-11-24 Revised:2023-04-04 Online:2023-05-10 Published:2023-05-10
  • About author:ZHANG Liyang (1991-), male, Shijiazhuang City, Hebei Province, Ph.D student. Research areas include sedimentary geochemistry and regional tectonics of the Central Asian Orogenic Belt. E-mail: zhanglyang@hgu.edu.cn
  • Supported by:
    the National Key Research and Development Program of China “Metallogenic systems, deep structure and paragenesis of the Northeastern China compound orogenic belt”(2017YFC0601302);The Opening Foundation of Hebei Key Laboratory of Strategic Critical Mineral Resources(HGU-SCMR2132)

硅质岩广泛分布于前寒武纪到新生代的造山带和沉积盆地中,对其成因和沉积环境进行研究对于了解区域的古地理、古构造、古海洋和古气候演化等信息具有重要作用。通过归纳总结已有的判别硅质岩成因和沉积环境的地球化学指标,认为硅质岩成因的判别应重点关注自生硅质矿物,并以外来混入物质作为参考,其有效的判别指标包括Al、Ti、Fe、Th、Ge/Si值、Si同位素和稀土元素等;硅质岩沉积环境的判别关键在于区分陆源物质和海底热液物质对硅质沉积的相对贡献比例,以往的沉积环境判别图解虽然有一定的实用性,但误差较大,需要谨慎使用。对于造山带中出露的硅质岩,考虑到其与洋板块地层关系密切,尝试建立了二者之间的关联模型。依据此关联模型,造山带中的硅质岩可分为洋脊—海岭亚型、远洋深海平原亚型Ⅰ、远洋深海平原亚型Ⅱ、洋岛—海山亚型、洋内弧亚型以及弧前海沟亚型。硅质岩—洋板块地层关联模型不仅为利用硅质岩恢复造山带增生杂岩原始序列提供了依据,同时将硅质岩作为区分大洋主洋盆和弧后、弧间洋盆的重要证据。以大洋钻探在太平洋获得的部分始新世硅质沉积为例,认为大洋主洋盆以发育几乎不受陆源和热液物质影响的深海平原硅质岩为特征,这类硅质岩具有Fe/Ti值接近20、Eu/Eu*值接近1.1以及负的Ce/Ce*值等地球化学特征。上述认识将为后续造山带中的硅质岩研究提供新的思路和参考依据。

Cherts are widely distributed in Precambrian to Cenozoic orogenic belts and sedimentary basins.The origin and depositional environment of cherts are of great importance in understanding the regional paleogeographic, paleotectonic, paleo-ocean, and paleoclimate evolutions. After summarizing the existing geochemical methods for identifying the origin and depositional environment of cherts, it is concluded that the identification of the origin of cherts should focus on authigenic siliceous minerals and use exotic interfusion materials as references. Effective proxies include Al, Ti, Fe, Th, Ge/Si, Si isotopes, Rare Earth Elements (REE), etc. The essence of the discrimination of the depositional environment of cherts is to distinguish the relative contribution of terrigenous and hydrothermal materials; although previous discrimination diagrams provide practicability, they still involve errors and need to be used carefully. As an important type, cherts outcropped in orogenic belts are closely related to the Ocean Plate Stratigraphy (OPS). Here, a correlation scheme between them has been established. According to this correlation scheme, cherts outcropped in orogenic belts can be divided into the ridge subtype, pelagic abyssal plain subtype Ⅰ, pelagic abyssal plain subtype Ⅱ, ocean island-seamount subtype, intra-oceanic arc subtype, and forearc trench subtype. The cherts-OPS correlation scheme not only provides a basis for reconstructing the original sequence of the accretionary complex in an orogenic belt using cherts, but also considers cherts as important evidence for distinguishing the main oceanic basins from the back-arc and inter-arc oceanic basins. Taking the Eocene cherty ooze obtained by oceanic drilling in the Pacific as an example, it is suggested that the main oceanic basin is characterized by deep-sea plain cherty rocks that are almost unaffected by terrigenous and hydrothermal materials. These cherty rocks have geochemical characteristics such as Fe/Ti values close to 20, Eu/Eu* values close to 1.1 and negative Ce/Ce* values. These results provide new perspectives and references for subsequent research on cherts in orogenic belts.

中图分类号: 

图1 硅质岩成因的主要判别图解
(a)Al-Fe-Mn三角图,引自参考文献[ 29 ];(b)Eu/Eu*-Y/Ho图,据参考文献[ 10 ]修改;(c)样品的PAAS标准化稀土配分模式图,样品数据来源如图所示;(d)ω(Al 2O 3)-δ 30Si图解,引自参考文献[ 22
Fig. 1 Cross plots of the main discrimination diagrams for the origin of chert
(a) Al-Fe-Mn ternary diagram, cited from reference [ 29 ]; (b) Eu/Eu* vs. Y/Ho cross plot, modified after reference [ 10 ]; (c) PASS-normalized REE patterns, sample data sources as shown in the figure; (d) Plot of (Al 2O 3) content vs. δ 30Si, cited from reference [ 22
图2 硅质岩沉积环境的主要判别图解
(a) Fe 2O 3/TiO 2-Al 2O 3/(Al 2O 3+Fe 2O 3)图解,据参考文献[ 8 ]修改;(b) A1 2O 3/(Al 2O 3+Fe 2O 3)-(La/Ce) N图解,据参考文献[ 8 ]修改;(c) Al 2O 3/(100-SiO 2)-Fe 2O 3/(100-SiO 2)图解,据参考文献[ 7 ]修改;(d) 100×(Fe 2O 3/SiO 2)-100×(Al 2O 3/SiO 2)图解,据参考文献[ 7 ]修改
Fig. 2 Cross plots of the main discrimination diagrams for the depositional environment of chert
(a) Plot of Fe 2O 3/TiO 2-Al 2O 3 vs.(Al 2O 3+Fe 2O 3), modified after reference [ 8 ]; (b) Plot of A1 2O 3/(Al 2O 3+Fe 2O 3vs. (La/Ce) N, modified after reference [ 8 ]; (c) Plot of Al 2O 3/(100-SiO 2vs. Fe 2O 3/(100-SiO 2), modified from reference [ 7 ]; (d) Plot of 100×(Fe 2O 3/SiO 2vs. 100×(Al 2O 3/SiO 2), modified after reference [ 7
图3 洋板块地层形成的构造环境、主要类型与序列重建模型(据参考文献[ 14 ]修改)
Fig. 3 Tectonic settingmain types and sequence reconstruction model of the Ocean Plate StratigraphyOPS) (modified after reference 14 ])
图4 东太平洋部分大洋钻探的站位位置图
黄色圆圈为本文选取的站位点(65站位位于177°E而未在图中展示),红线表示古赤道和古纬度线,黄线表示磁异常等时线
Fig. 4 Location map of drill sites in the Eastern Pacific Ocean
The yellow circles represent the station position in this study (station 65 is located at 177° E and is not shown in this figure), red lines are the palaeoequator and paleolatitude, and yellow lines are magnetic anomaly isochrons
表1 大洋钻探部分站位硅质沉积地球化学组成
Table 1 Geochemical composition of the silicious deposits from Ocean Drilling Program
1 JONES D L, MURCHEY B. Geologic significance of Paleozoic and Mesozoic radiolarian chert[J]. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 455-492.
2 KNAUTH L P. Petrogenesis of chert[C]// HEANEY P J P, PREWITT C T, GIBBS G V. Silica: physical behavior, geochemistry and materials applications. Mineralogical Society of America, 1994: 233-258.
3 MARIN-CARBONNE J, ROBERT F, CHAUSSIDON M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleotemperatures?[J]. Precambrian Research, 2014, 247: 223-234.
4 ROBERT F, CHAUSSIDON M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts[J]. Nature, 2006, 443: 969-972.
5 IKEDA M, TADA R, OZAKI K. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms15532 .
6 CHEN D Z, QING H R, YAN X, et al. Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert[J]. Sedimentary Geology, 2006, 183: 203-216.
7 MURRAY R W. Chemical criteria to identify the depositional environment of chert: general principles and application[J]. Sedimentary Geology, 1994, 90: 213-232.
8 GIRTY G H, RIDGE D L, KNAACK C, et a1 .Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.
9 WEN H, FAN H, TIAN S, et al. The formation conditions of the early Ediacaran cherts, south China[J]. Chemical Geology, 2016, 430: 45-69.
10 LIANG Y T, TANG X, ZHANG J C, et al. Origin of Lower Carboniferous cherts in southern Guizhou, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022,590. DOI:10.1016/j.palaeo.2022.110863 .
11 ISOZAKI Y, MARUYAMA S, FUKUOKA F. Accreted oceanic materials in Japan[J]. Tectonophysics, 1990, 181(1): 179-205.
12 WAKITA K, METCALFE I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Science, 2005, 24 (6): 679-702.
13 KUSKY T M, WINDLEY B F, SAFONOVA I, et a1. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion[J]. Gondwana Research, 2013, 24(2): 501-547.
14 ZHANG Kexin, HE Weihong, XU Yadong, et al. Reconstruction of main types for oceanic plate strata in the subduction accretionary complex and feature of sequence for each type: an example from the Qinghai-Tibet Tethyan Permian strata[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(2): 138-151.
张克信, 何卫红, 徐亚东, 等. 论从俯冲增生杂岩带重建洋板块地层主要类型与序列:以青藏特提斯二叠系为例[J]. 沉积与特提斯地质, 2021, 41(2): 138-151.
15 ZHANG K X, WANG J X, HE W H, et al. Reconstructed ocean plate stratigraphy sequences from the Permian subduction-accretionary complex in the Qinghai-Tibet Plateau[J]. Geosystems and Geoenvironment, 2022, 1. DOI:10.1016/j.geogeo.2022.100034 .
16 LI Tingdong, XIAO Qinghui, PAN Guitang, et al. A consideration about the development of ocean plate geology[J]. Earth Science, 2019, 44(5): 1 441-1 451.
李廷栋, 肖庆辉, 潘桂棠, 等. 关于发展洋板块地质学的思考[J]. 地球科学, 2019, 44(5): 1 441-1 451.
17 LIU Yong, LI Tingdong, XIAO Qinghui, et al. Progress in geological study of oceanic plates[J]. Earth Science Frontiers, 2022, 29(2): 79-93.
刘勇, 李廷栋, 肖庆辉, 等. 洋板块地质研究进展[J]. 地学前缘, 2022, 29(2): 79-93.
18 LI Tingdong, LIU Yong, DING Xiaoyong, et al. Ten advances in regional geological research of China in recent years[J]. Acta Geologica Sinica, 2022, 96(5): 1 544-1 581.
李廷栋, 刘勇, 丁孝勇, 等. 中国区域地质研究的十大进展[J]. 地质学报, 2022, 96(5): 1 544-1 581.
19 XIAO Qinghui, LI Tingdong, PAN Guitang, et al. Petrologic ideas for identification of ocean-continent transition: recognition of intra-oceanic arc and initial subduction[J]. Geology in China, 2016, 43(3): 721-737.
肖庆辉, 李廷栋, 潘桂棠, 等. 识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J]. 中国地质, 2016, 43(3): 721-737.
20 ACKERMAN L, ZAK J, KACHLIK V, et al. The significance of cherts as markers of ocean plate stratigraphy and paleoenvironmental conditions: new insights from the Neoproterozoic-Cambrian Blovice accretionary wedge,Bohemian Massif[J]. Geoscience Frontiers, 2023, 14. DOI:10.1016/j.gsf.2022.101478 .
21 YAO Xu, ZHOU Yaoqi, LI Su, et al. Research status and advances in chert and Permian chert event[J]. Advances in Earth Science, 2013, 28(11): 1 189-1 200.
姚旭, 周瑶琪, 李素, 等. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11): 1 189-1 200.
22 van den BOORN S H J M, van BERGEN M J, NIJMAN W, et al. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes[J]. Geology, 2007, 35: 939-942.
23 van den BOORN S H J M, van BERGEN M J, VROON P Z, et al. Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: implications for Early Archaean marine environments[J]. Geochimica et Cosmochimica Acta, 2010, 74: 1 077-1 103.
24 MURATA K J, FRIEDMAN I, GIEASON J D. Oxygen isotope relations between diagnetic silica minerals in Monterey shale, Temblorrange, California[J]. American Journal of Science, 1977, 277: 259-272.
25 BOHRMANN G, ABELMANN A, GERSONDE R, et al. Pure siliceous ooze, a diagenetic environment for early chert formation[J]. Geology, 1994, 22: 207-210.
26 PERRY JR E C, LEFTICARIU L. Formation and geochemistry of Precambrian cherts[C]// TUREKIAN H D H K. Treatise on geochemistry. Second ed. Oxford: Elsevier,2014: 113-139.
27 MALIVA R G, SIEVER R. Nodular chert formation in carbonate rocks[J]. The Journal of Geology, 1989, 97(4): 421-433.
28 SANG Longkang, MA Changqian. Petrology[M]. 2nd edition.Beijing: Geology Press, 2012: 373-378.
桑隆康, 马昌前 .岩石学[M]. 第2版. 北京: 地质出版社, 2012: 373-378.
29 ADACHI M, YAMAMOTO K, SUIGISKI R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47: 125-148.
30 HESSE R. Origin of chert: diagenesis of biogenic siliceous Sediments[J]. Geoscience Canada,1988, 15:171-192.
31 GUO Fusheng, LIN Ziyu, DU Yangsong, et al. On the characteristics and origin of a peculiar type of siliceous rock[J]. Earth Science Frontiers, 2013, 10(4): 573-581.
郭福生, 林子瑜, 杜洋松, 等. 一种特殊类型硅质岩的特征与成因研究[J]. 地学前缘, 2013, 10(4): 573-581.
32 ZHANG Qianhui, SU Jinhong, WAN Li, et al. Analysis of origin and existing problems of siliceous minerals in marine carbonate rocks in Sichuan Basin[J]. Frontiers of Earth Science, 2021, 11(6): 869-878.
张倩慧, 苏进红, 万漓, 等. 四川盆地海相碳酸盐岩中硅质含有物成因及存在问题分析[J]. 地球科学前沿, 2021, 11(6): 869-878.
33 ZHAO Chenglin. Exploring organic origin of Precambrian bedded chert in relation to hydrocarbon generation[J]. Journal of University of Petroleum (East China), 1980(3): 1-9.
赵澄林. 试论前寒武系层状燧石岩的有机成因及其与油气生成的关系[J]. 华东石油学院学报, 1980(3): 1-9.
34 WU Qingyu, LIU Zhili, ZHU Haoran. Biogeochemical mode and simulation on the effect of Precambrian algae in the forming process of certain laminated chert[J]. Acta Geologica Sinica, 1986(4): 375-389.
吴庆余, 刘志礼, 朱浩然. 前寒武纪藻类对某些层纹状燧石形成作用的生物地球化学模式和模拟实验研究[J]. 地质学报, 1986(4): 375-389.
35 LEDEVIN M, ARNDT N, SIMIONOVICI A, et al. Silica precipitation triggered by clastic sedimentation in the Archean: new petrographic evidence from cherts of the Kromberg type section, South Africa[J]. Precambrian Research, 2014, 255: 316-334.
36 FISCHER W W, KNOLL A H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation[J]. Geological Society of American Bulletin, 2009, 121: 222-235.
37 BOSTROM K, PETERSON M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447.
38 YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the franciscan and shimanto terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108.
39 RONA P A. Hydrothennal mineralization at oceanic ridges[J]. Canadian Mineralogist, 1988, 126: 431-465.
40 MARCHIG V. Some geochemistry indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 58(3): 241-56.
41 BAREILLE G, LABRACHERIE M, MORTLOCK R A, et al. A test of (Ge/Si) opal as a Paleorecorder of (Ge/Si) seawater[J]. Geology, 1998, 26: 179-182.
42 DONG L, SHEN B, LEE C A, et al. Germanium/silicon of the Ediacaran-Cambrian Laobao cherts: implications for the bedded chert formation and paleoenvironment interpretations[J]. Geochemistry Geophysics Geosystems, 2015, 16(3): 751-763.
43 SHEN B, LEE C T A, XIAO S. Germanium/silica ratios in diagenetic chert nodules from the Ediacaran Doushantuo Formation, South China[J]. Chemical Geology, 2011, 280: 323-335.
44 CUI Y, LANG X, LI F, et al. Germanium/silica ratio and rare earth element composition of silica-filling in sheet cracks of the Doushantuo Cap Carbonates, South China: constraining hydrothermal activity during the marinoan snowball Earth glaciation[J]. Precambrian Research, 2019, 332. DOI:10.1016/j.precamres.2019.105407 .
45 BERNSTEIN L R. Germanium geochemistry and mineralogy[J]. Geochimica et Cosmochimica Acta, 1985, 49: 2 409-2 422.
46 MURNANE R J, STALLARD R F. Germanium and silicon in rivers of the Orinoco drainage basin[J]. Nature, 1990, 344: 749-752.
47 SHEN B, MA H, YE H, et al. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: implications for the evolution of Mesoproterozoic cratonic basin, North China[J]. Precambrian Research, 2018, 310: 213-228.
48 MORTLOCK R A, FROELICH P N, FEELY R A, et al. Silica and germanium in Pacific Ocean hydrothermal vents and plumes[J]. Earth and Planet Science Letters, 1993, 119: 365-378.
49 HAMMOND D E, MCMANUS J, BERELSON W M. Oceanic germanium/silicon ratios: evaluation of the potential overprint of temperature on weathering signals[J]. Paleoceanography, 2004, 19. DOI: 10.1029/2003PA000940 .
50 ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63: 363-372.
51 DOUVILLE E, BIENVENU P, CHARLOU J L. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63: 627-643.
52 DEVOK V M, LALONDE S V, KAMENOV G D, et al. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S)[J]. Chemical Geology, 2015, 415: 126-140.
53 KAMBER B S, GREIG A, COLLERSON K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1 041-1 058.
54 NOZAKI Y, ZHANG J, AMAKAWA H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148: 329-340.
55 LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare Earth Element and Yttrium variability in south east Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
56 WEN Hanjie, QIU Yuzhuo, LING Hongwen, et al. Geochemistry and genesis of bedded cherts in some typical Eopaleozoic high selenium black shales, China[J]. Acta Sedimentologica Sinica, 2003, 21(4): 620-626.
温汉捷, 裘愉卓, 凌宏文, 等. 中国早古生代若干高硒黑色岩系中层状硅质岩的地球化学特征及其成因意义[J]. 沉积学报, 2003, 21(4): 620-626.
57 WANG Shan, CAO Yinghui, ZHANG Yajin, et al. Origin and geochemical characteristics of siliceous rocks in the third member of Yingshan Formation in Gucheng area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 710-720.
王珊, 曹颖辉, 张亚金, 等.塔里木盆地古城地区奥陶系鹰三段硅质岩地球化学特征及成因[J]. 天然气地球科学, 2020, 31(5): 710-720.
58 ANDRE L, CARDINAL D, ALLEMAN L Y, et al. Silicon isotopes in 3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle[J]. Earth and Planetary Science Letters, 2006, 245: 162-173.
59 MARIN-CARBONNE J, FAURE F, CHAUSSIDON M, et al. A petrographic and isotopic criterion of the state of preservation of Precambrian cherts based on the characterization of the quartz veins[J]. Precambrian Research, 2013, 231: 290-300.
60 FITOUSSI C, BOURDON B, KLEINE T. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core[J]. Earth and Planetary Science Letters, 2009, 287: 77-85.
61 DING T P, JIANG S, WAN D, et al. Silicon isotope geochemistry[M]. Beijing: Geological Publishing House, 1996.
62 de la ROCHA C L, BRZEZINSKI M A, DENIRI M J. A first look at the distribution of stable isotopes of silicon in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64: 2 467-2 477.
63 GEORG R B, REYNOLDS B C, WEST A J, et al. Silicon isotope variations accompanying basalt weathering in Iceland[J]. Earth and Planetary Science Letters, 2007, 261: 476-490.
64 GEILERT S, VROON P Z, KELLER N S, et al. Silicon isotope fractionation during silica precipitation from hot-spring waters: evidence from the Geysir geothermal field, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 164: 403-427.
65 MURRAY R W, JONES D L. Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couple[J]. Geology, 1992, 20: 271-274.
66 LI C, CUI Y, NING M, et al. Can Eu anomaly indicate a hydrothermal fluid si source?A case study of chert nodules from the Permian Maokou and Wujiaping Formations, South China[J]. Frontiers of Earth Science, 2022, 10. DOI:10.3389/feart.2022.932263 .
67 KATO Y, NAKAO K, ISOZAKI Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from south-west Japan:implications for an oceanic redox change[J]. Chemical Geology, 2002, 182(1): 15-34.
68 MURRAY R W. Rare Earth Element as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271.
69 HOU Q, MOU C, HAN Z,et al. Origin of chert in the upper Ordovician-lower Silurian: implications for the sedimentary environment of North Qilian Orogen[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2021, 112(1): 1-16.
70 ZHANG Cong, HUANG Hu, HOU Mingcai. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 2017, 44(3): 294-304.
张聪, 黄虎, 侯明才. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题[J]. 成都理工大学学报(自然科学版), 2017, 44(3): 294-304.
71 YANG Zhijun, ZHOU Yongzhang, ZHANG Chengbo, et al. The research of fabric information in the siliceous rock and its significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(3): 255-258.
杨志军, 周永章, 张澄博, 等. 硅质岩组构信息研究及其意义[J] 矿物岩石地球化学通报, 22(3): 255-258.
72 CUI Chunlong. Some problems in the study of the siliceous rock [J]. Mineralogy and Petrology, 2001, 21(3): 100-104.
崔春龙.硅质岩研究中的若干问题[J]. 矿物岩石, 2001, 21(3): 100-104.
73 HE Junguo, ZHOU Yongzhang, YANG Zhijun, et al. Multivariate statistical analysis of diagenetic information of chert from southern Tibet, China[J]. Geological Bulletin of China, 2010, 29 (4): 549-555.
何俊国, 周永章, 杨志军, 等. 藏南硅质岩成岩信息多元统计分析[J]. 地质通报, 2010, 29(4): 549-555.
74 GAO P, HE Z, LASH G G, et al. Mixed seawater and hydrothermal sources of nodular chert in middle Permian limestone on the eastern Paleo-Tethys margin (South China)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2020, 551. DOI: 10.1016/j.palaeo.2020.109740 .
75 XU Bei, WANG Zhiwei, ZHANG Liyang, et al. The Xing-Meng intracontinent orogenic belt[J]. Acta Petrologica Sinaca, 34(10): 2 819-2 844.
徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2 819-2 844.
76 SONG Tianyue, DING Tiping. The trying application of silicon isotope of silication to analyzing sedimentary faces[J]. Chinese Science Bulletin, 1989, 34(18): 1 408-1 411.
宋天锐, 丁悌平. 硅质岩中硅同位素(δ30Si)应用于沉积相分析的新尝试[J]. 科学通报, 1989, 34(18): 1 408-1 411.
77 KUNIMARU T, SHIMIZU H, TAKAHASHI K, et a1. Differences in geochemical features between Permian and Triassic cherts from the southern Chichibu terrane, southwest Japan: REE abundances,major element compositions and Sr isotopic ratios[J]. Sedimentary Geology, 1998, 119(3/4): 195-217.
78 SHIMIZU H, KUNIMARU T, YONEDA S, et a1. Sources and depositional environments of some Permian and Triassic cherts:significance of Rb-Sr and Sm-Nd isotopic and REE abundance data[J]. The Journal of Geology, 2001, 109(1): 105-125.
79 WANG Shujie, ZHAI Shikui, YU Zenghui, et al. Reflections on model of modern seafloor hydrothermal system[J]. Earth Science, 2018,43(3): 835-850.
王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思[J].地球科学 2018,43(3): 835-850.
80 ZHU Qikuan, ZHOU Huaiyang. Reviews and prospects of submarine metalliferous sediments of hydrothermal origin[J]. Marine Sciences, 2021, 45(8): 69-80.
朱启宽, 周怀阳. 海底热液成因含金属沉积物的研究现状及展望[J]. 海洋科学, 2021, 45(8): 69-80.
81 FITZSIMMONS J N, JOHN S G, MARSAY C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195-201.
82 GURVICH E G. Metalliferous sediments of world ocean[M]. Netherlands: Springer-Verlag Berlin Heidelberg, 2006.
83 GARTMAN A, FINDLAY A. Impacts of hydrothermal plume processes on oceanic metal cycles and transport[J]. Nature Geoscience, 2020, 13 (396): 396-402.
84 MURRAY R W, BRINK M R B TEN, GERLACH D C, et al. Rare earth, major and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments[J]. Geocbimica Cosmochimica Acta, 1991, 55: 1 875-1 895.
85 MPODOZIS C, FORSYTHE R. Stratigraphy and geochemistry of accreted fragments of the ancestral pacific floor in southern South America[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1983, 41(1/2): 103-124.
86 KEMKIN I V, KEMKINA R A. Comparative geochemical study of the cherty rocks of the Taukha terrane (Sikhote-Alin) and its aleogeodynamic significance[J]. Acta Geochim, 2020, 39(4): 539-560.
87 MATSUDA T, ISOZAKI Y. Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone[J]. Tectonics,1991, 10: 475-499.
88 KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535-539.
89 SUN Z L, ZHOU H Y, YANG Q H, et al. Growth model of a hydrothermal low-temperature Si-rich chimney: example from the CDE hydrothermal field, Lau Basin[J]. Science China-Earth Sciences, 2012, 55(10): 1 716-1 730.
90 DONG A, SUN Z, KENDALL B, et al. Insights from modern diffuse-flow hydrothermal systems into the origin of post-GOE deep-water Fe-Si precipitates[J]. Geochimica et Cosmochimica Acta, 2022, 317: 1-17.
91 MONTGOMERY H, KERR A C. Rethinking the origins of the red chert at La Desirade, French West Indies[J]. Geological Society London Special Publications, 2009, 328(1): 457-467.
92 MARUYAMA S, KAWAI T, WINDLEY B F. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, Anglesey-Lleyn, Wales, UK[J]. Geological Society London Special Publications, 2010, 338: 55-75.
93 LEI Z, DASHTGARD S E, WANG J, et al. Origin of chert in Lower Silurian Longmaxi Formation: implications for tectonic evolution of Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529: 53-66.
94 KEMKIN I V, KEMKINA R A. Depositional environment of cherts of the Sikhote-Alin region (Russia Far East): evidence from major, trace and Rare Earth Elements geochemistry[J]. Journal of Earth Science, 2015, 26(2): 259-272.
95 WAKITA K. OPS melange: a new term for melanges of convergent margins of the world[J]. International Geology Review, 2015, 57(5/8): 529-539.
96 FAN Jianjun, LI Cai, NIU Yaoling, et al. Identification method and geological significance of intraplate ocean island-seamount fragments in orogenic belt[J]. Earth Science, 2021, 46(2): 381-404.
范建军, 李才, 牛耀龄, 等. 造山带板内洋岛—海山残片的识别及地质意义[J]. 地球科学, 2021, 46(2): 381-404.
97 ISOZAKI Y. Memories of pre-Jurassic lost oceans: how to retrieve them from extant lands[J]. Geoscience Canada, 2014, 41: 283-311.
98 SAFONOVA I, MARUYAMA S, KOJIMA S . et al. Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology, and geochemistry[J]. Gondwana Research, 2016, 33: 92-114.
99 ROBERTSON A H F, KUTTEROLF S, AVERY A, et al. Depositional setting, provenance, and tectonic-volcanic setting of Eocene-recent deep-sea sediments of the oceanic Izu-Bonin forearc, northwest Pacific (IODP expedition 352)[J]. International Geology Review, 2018, 60(15): 1 816-1 854.
100 BOSCHMAN L M, van HINSBERGEN D J J, SPAKMAN W. Reconstructing Jurassic-Cretaceous intra-oceanic subduction evolution in the northwestern Panthalassa Ocean using ocean plate stratigraphy from Hokkaido, Japan[J]. Tectonics, 2021, 40. DOI:10.1029/2019TC005673 .
101 UEDA H, MIYASHITA S. Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest[J]. Island Arc, 2005, 14(4): 582-598.
102 XIA L, LI X. Basalt geochemistry as a diagnostic indicator of tectonic setting[J]. Gondwana Research, 2019, 65: 43-67.
103 SAFONOVA I, PERFILOVA A, SAVINSKIY I, et al. Sandstones of the Itmurundy accretionary complex, central Kazakhstan, as archives of arc magmatism and subduction erosion: evidence from U-Pb zircon ages, geochemistry and Hf-Nd isotopes[J]. Gondwana Research, 2022, 111: 35-52.
104 HU Xiumian, AN Wei, GARZANTI E, et al. Recognition of trench basins in collisional orogens: insights from the Yarlung Zangbo suture zone in southern Tibet[J]. Science China Earth Sciences, 2020, 63(12): 2 017-2 028.
胡修棉, 安慰, Garzanti E, 等. 碰撞造山带海沟盆地的识别——以雅鲁藏布缝合带为例[J]. 中国科学: 地球科学, 2020, 50(12): 1 893-1 905.
105 YANG Jing, WANG Jinrong, ZHANG Qi, et al. Back-Arc Basin Basalt (BABB) data mining: comparison with MORB and IAB[J]. Advances in Earth Science, 2016, 31(1): 66-77.
杨婧, 王金荣, 张旗, 等. 弧后盆地玄武岩(BABB)数据挖掘: 与MORB 及IAB 的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
106 ZIEGLER C L, MURRAY R W, HOVAN S A, et al. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 416-432.
[1] 王晓宁, 岳大鹏, 赵景波. 榆林西南部下白垩统砂岩粒度组成与成因分析[J]. 地球科学进展, 2022, 37(10): 1088-1100.
[2] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[3] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[4] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[5] 关秀宇, 郭杰, 陈海燕, 修迪, 张运强. 冀北承德盆地奥陶纪冶里组叠层石的发现及沉积环境[J]. 地球科学进展, 2018, 33(5): 545-553.
[6] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[7] 秦松, 孙传敏, 杨继友, 张伟, 尼玛次仁. 冈底斯东段色日绒地区冈瓦纳相冰海杂砾岩特征及其意义[J]. 地球科学进展, 2015, 30(11): 1239-1249.
[8] 马会珍, 王雪华. 黔东北志留纪晚期小溪组沉积环境研究[J]. 地球科学进展, 2014, 29(7): 859-864.
[9] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[10] 姚旭, 周瑶琪, 李素, 李斗. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11): 1189-1200.
[11] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[12] 沈文杰,林杨挺,王道德,周永章,缪秉魁. 天然富勒烯及其在P-T界线地层的研究进展[J]. 地球科学进展, 2006, 21(9): 903-910.
[13] 刘羿,彭子成,周静,贺剑峰,江玉平,刘桂建. 热带珊瑚的高分辨率环境信息与全球变化研究进展[J]. 地球科学进展, 2006, 21(4): 383-393.
[14] 屈建军; 代枫年; 康国定; 王远萍; 张伟民. 鸣沙研究及其展望[J]. 地球科学进展, 1993, 8(4): 59-61.
[15] 李任伟. 分子地层学[J]. 地球科学进展, 1992, 7(2): 78-.
阅读次数
全文


摘要