地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 441 -452. doi: 10.11867/j.issn.1001-8166.2023.022

综述与评述    下一篇

深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题
黄春林 1( ), 侯金亮 1, 李维德 2, 顾娟 3, 张莹 1, 韩伟孝 1, 王维真 1, 温小虎 4, 朱高峰 3   
  1. 1.中国科学院西北生态环境资源研究院,甘肃省遥感重点实验室,甘肃 兰州 730000
    2.兰州大学数学 与统计学院,甘肃 兰州 730000
    3.兰州大学资源环境学院,甘肃 兰州 730000
    4.中国科学院 西北生态环境资源研究院,内陆河流域生态水文重点实验室,甘肃 兰州 730000
  • 收稿日期:2022-10-24 修回日期:2023-04-19 出版日期:2023-05-10
  • 基金资助:
    国家自然科学基金项目“深度学习融合遥感大数据的陆地水文数据同化理论、方法与集成技术”(42130113)

Data Assimilation in Terrestrial Hydrology Based on Deep Learning Fusing Remote Sensing Big Data: Research Advances and Key Scientific Issues

Chunlin HUANG 1( ), Jinliang HOU 1, Weide LI 2, Juan GU 3, Ying ZHANG 1, Weixiao HAN 1, Weizhen WANG 1, Xiaohu WEN 4, Gaofeng ZHU 3   

  1. 1.Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
    3.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    4.Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2022-10-24 Revised:2023-04-19 Online:2023-05-10 Published:2023-05-10
  • About author:HUANG Chunlin (1979-), male, Qingtongxia City, Ningxia Hui Autonomous Region, Professor. Research areas include hydrological remote sensing, multi-source remote sensing data assimilation, SDGs monitoring and evaluation. E-mail: huangcl@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Data assimilation of terrestrial hydrological in theory, method and integration technology based on deep learning fusing remote sensing big data”(42130113)

以深度学习为核心的数据驱动方法逐步应用于地球科学领域,但这类方法在模型的可解释性和物理一致性等方面还存在挑战。在遥感大数据背景下,如何结合深度学习和数据同化方法,发展陆地水循环过程模拟与预报的新技术和新方法成为地球科学领域的重要研究方向。重点梳理了近年来深度学习在改善陆地水循环要素观测数据质量以及深度学习如何减少物理模型不确定性方面的最新进展,从观测、模型和系统集成3个方面凝练出深度学习融合遥感大数据的陆地水文数据同化研究的关键科学问题: 深度学习反演遥感产品时,如何增强样本的时空代表性? 如何发展数据同化框架下物理导引的深度学习新方法? 如何通过“数据—模型”双驱动提升陆地水循环的可预报性?开展相关研究和探索将有助于推动“数据—模型”混合建模方法在水文领域的深入应用,提高陆地水循环过程的模拟和预测能力。

Data-driven methods with deep learning as their core have been gradually applied in Earth science; however, challenges remain regarding the interpretability of models and physical consistency. With the background of remote sensing big data, combining deep learning and data assimilation methods to develop new techniques for the simulation and prediction of terrestrial water cycle processes has become an important research direction in Earth science. Τhe progress in deep learning in recent years combines improving the quality of observation data of terrestrial water cycle components and reducing the uncertainty of physical models. Furthermore, the key scientific issues regarding data assimilation in terrestrial hydrology based on deep learning fusing remote sensing big data are classified according to the observations, physical models, and system integration: How can the temporal and spatial representativeness of samples be enhanced when deep learning inverts remote sensing products? How can a new physics-guided deep learning method be developed within the framework of data assimilation? How can the predictability of the terrestrial water cycle be improved through the “data-model” dual drive? Relevant research and exploration should help promote the in-depth application of the “data-model” hybrid modeling method in the field of hydrology and improve the simulation and prediction capacity of the terrestrial water cycle process.

中图分类号: 

图1 机器学习/深度学习在地球系统科学中的10个应用方向(据参考文献[ 12 ]修改)
各应用方向按照物理模型的参与程度(横轴)和机器学习/深度学习代码易用、成熟程度(纵轴)组织
Fig. 1 Ten ways to apply machine/deep learning in the Earth and Space Sciencesmodified after reference 12 ])
Each application direction is organized by the degree of involvement of physics-based models (horizontal scale) and the degree to which machine/deep learning codes are available and readily applicable (vertical scale)
图2 深度学习与陆面水文数据同化系统融合框架
DL1~DL6表示数据驱动模型分别用于陆面/水文过程模型参数优化、模型的模块/子模块代理、模型系统偏差校正、观测算子代理、观测误差估计、数据同化方法替代
Fig. 2 Coupling of deep learning and land data assimilation
DL1~DL6 refer to deep learning used for model parameter optimization, model process/sub-process agent, assimilation system deviation correction, observation operator modeling, observation error estimation and DA algorithm substitution, respectively
8 李德仁,张良培,夏桂松 .遥感大数据自动分析与数据挖掘[J].测绘学报,2014, 43(12):1 211-1 216.
9 GUO Huadong. A project on big Earth data science engineering[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 818-824.
郭华东. 地球大数据科学工程[J]. 中国科学院院刊, 2018, 33(8): 818-824.
10 LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7 553): 436-444.
11 REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7 743):195-204.
12 BORTNIK J, ENRICO C. Ten ways to apply machine learning in the Earth and space sciences[J]. Eos, 2021,102. DOI:10.1029/2021EO160257 .
13 LI Xin, LIU Feng, FANG Miao. Harmonizing models and observations: data assimilation in Earth system science[J]. Science China: Earth Sciences, 2020, 50(9): 1 185-1 194.
李新, 刘丰, 方苗.模型与观测的和弦: 地球系统科学中的数据同化[J]. 中国科学: 地球科学, 2020, 50(9): 1 185-1 194.
14 GEER A J. Learning earth system models from observations: machine learning or data assimilation?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 194). DOI:10.1098/rstq.2020.0089 .
15 BOUKABARA S A, KRASNOPOLSKY V M, PENNY S G, et al. Outlook for exploiting artificial intelligence in the earth and environmental sciences[J]. Bulletin of the American Meteorological Society, 2021, 102(5). DOI:10.1175/BAMS-D-20-0031.1 .
16 DÜBEN P, MODIGLIANI U, GEER A, et al. Machine learning at ECMWF: a roadmap for the next 10 years[R]. European Centre for Medium-Range Weather Forecasts, 2021: 878.
17 DUAN Q Y, PAPPENBERGER F, WOOD A, et al. Handbook of hydrometeorological ensemble forecasting[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020.
18 LONG D, BAI L L, YAN L, et al. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution[J]. Remote Sensing of Environment, 2019, 233. DOI:10.1016/j.rse.2019.111364 .
19 ABOWARDA A S, BAI L L, ZHANG C J, et al. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale[J]. Remote Sensing of Environment, 2021, 255. DOI:10.1016/j.rse.2021.112301 .
20 JUNG M, REICHSTEIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7 318): 951-954.
21 LIANG J Y, LIU X P, HUANG K N, et al. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance[J]. Remote Sensing of Environment, 2015, 156: 500-509.
22 DOBREVA I D, KLEIN A G. Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance[J]. Remote Sensing of Environment, 2011, 115(12): 3 355-3 366.
23 HOU J L, HUANG C L. Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5 601-5 611.
24 BAEZ-VILLANUEVA O M, ZAMBRANO-BIGIARINI M, BECK H E, et al. RF-MEP: a novel Random Forest method for merging gridded precipitation products and ground-based measurements[J]. Remote Sensing of Environment, 2020, 239. DOI:10.1016/j.rse.2019.111606 .
25 PARISOUJ P, MOHEBZADEH H, LEE T. Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States[J]. Water Resources Management, 2020, 34(13): 4 113-4 131.
26 SAHOO S, RUSSO T A, ELLIOTT J, et al. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S[J]. Water Resources Research, 2017, 53(5): 3 878-3 895.
1 CHEN Shupeng. Earth system science: China’s progress·century outlook[M]. Beijing: China Science and Technology Press, 1998.
陈述彭. 地球系统科学:中国进展·世纪展望 [M].北京:中国科学技术出版社, 1998.
2 CHENG Guodong, LI Xin. Integrated research methods in watershed science[J]. Science China: Earth Sciences, 2015, 45(6):811-819.
程国栋,李新. 流域科学及其集成研究方法[J]. 中国科学:地球科学, 2015, 45(6):811-819.
3 TANG Qiuhong, LIU Xingcai, LI Zhe, et al. Integrated water systems model for terrestrial water cycle simulation[J]. Advances in Earth Science, 2019, 34(2):115-123.
汤秋鸿,刘星才,李哲,等. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展,2019, 34(2):115-123.
4 SHI Jiancheng, LEI Yonghui. Remote sensing and Earth system science[J]. Journal of Remote Sensing, 2016, 20(5):827-831.
施建成,雷永荟. 遥感与地球系统科学[J]. 遥感学报,2016, 20(5):827-831.
5 BAUER P, DUEBEN P D, HOEFLER T, et al. The digital revolution of Earth-system science[J]. Nature Computational Science, 2021, 1(2): 104-113.
6 HEY T, TANSLEY S, TOLLE K. The fourth paradigm: data-intensive scientific discovery[M]. Redmond, Washington: Microsoft Research, 2009.
7 GUO Huadong, WANG Lizhe, CHEN Fang, et al. Scientific big data and digital Earth[J]. Chinese Science Bulletin, 2014, 59(12): 1 047-1 054.
27 HE X G, CHANEY N W, SCHLEISS M, et al. Spatial downscaling of precipitation using adaptable random forests[J]. Water Resources Research, 2016, 52(10): 8 217-8 237.
28 LIU Y, JING W L, WANG Q, et al. Generating high-resolution daily soil moisture by using spatial downscaling techniques: a comparison of six machine learning algorithms[J]. Advances in Water Resources, 2020, 141. DOI:10.1016/j.advwatres.2020.103601 .
29 MAO H Z, KATHURIA D, DUFFIELD N, et al. Gap filling of high-resolution soil moisture for SMAP/sentinel-1: a two-layer machine learning-based framework[J]. Water Resources Research, 2019, 55(8): 6 986-7 009.
30 XU T R, GUO Z X, LIU S M, et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8 674-8 690.
31 IRVING K, KUEMMERLEN M, KIESEL J, et al. A high-resolution streamflow and hydrological metrics dataset for ecological modeling using a regression model[J]. Scientific Data, 2018, 5. DOI:10.1038/sdata.2018.224 .
32 TAO Y, HSU K, IHLER A, et al. A two-stage deep neural network framework for precipitation estimation from bispectral satellite information[J]. Journal of Hydrometeorology, 2018, 19(2): 393-408.
33 AKBARI ASANJAN A, YANG T T, HSU K, et al. Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(22): 12 543-12 563.
34 WANG C G, TANG G Q, GENTINE P. PrecipGAN: merging microwave and infrared data for satellite precipitation estimation using generative adversarial network[J]. Geophysical Research Letters, 2021, 48(5). DOI:10.1029/2020GL092032 .
35 KRATZERT F, KLOTZ D, BRENNER C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[J]. Hydrology and Earth System Sciences, 2018, 22(11): 6 005-6 022.
36 NI L L, WANG D, SINGH V P, et al. Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583. DOI:10.1016/j.jhydrol.2019.124296 .
7 郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球[J]. 科学通报, 2014, 59(12): 1 047-1 054.
8 LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1 211-1 216.
37 FANG K, PAN M, SHEN C P. The value of SMAP for long-term soil moisture estimation with the help of deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2 221-2 233.
38 A Y L, WANG G Q, HU P, et al. Root-zone soil moisture estimation based on remote sensing data and deep learning[J]. Environmental Research, 2022, 212. DOI:10.1016/j.envres.2022.113278 .
39 ZHANG Q, YUAN Q, JIN T, et al. SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022[J]. Earth System Science Data, 2022, 14(10): 4 473-4 488.
40 XIA M, LIU W A, SHI B C, et al. Cloud/snow recognition for multispectral satellite imagery based on a multidimensional deep residual network[J]. International Journal of Remote Sensing, 2019, 40(1): 156-170.
41 HOU J L, HUANG C L, ZHANG Y, et al. Reconstructing a gap-free MODIS normalized difference snow index product using a long short-term memory network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
42 YATHEENDRADAS S, KUMAR S. A novel machine learning-based gap-filling of fine-resolution remotely sensed snow cover fraction data by combining downscaling and regression[J]. Journal of Hydrometeorology, 2022, 23(5): 637-658.
43 WANG J W, YUAN Q Q, SHEN H F, et al. Estimating snow depth by combining satellite data and ground-based observations over Alaska: a deep learning approach[J]. Journal of Hydrology, 2020, 585. DOI:10.1016/j.jhydrol.2020.124828 .
44 ZHU L L, ZHANG Y H, WANG J G, et al. Downscaling snow depth mapping by fusion of microwave and optical remote-sensing data based on deep learning[J]. Remote Sensing, 2021, 13(4). DOI:10.3390/rs13040584 .
45 CHEN Z J, ZHU Z C, JIANG H, et al. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods[J]. Journal of Hydrology, 2020, 591. DOI:10.1016/j.jhydrol.2020.125286 .
46 WANG X S, GAO B, WANG X S. Investigating the ability of deep learning on actual evapotranspiration estimation in the scarcely observed region[J]. Journal of Hydrology, 2022, 607. DOI:10.1016/j.jhydrol.2022.127506 .
47 DONG J, ZHU Y J, JIA X X, et al. Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China[J]. Journal of Hydrology, 2022, 604. DOI:10.1016/j.jhydrol.2021.127207 .
48 LI Q L, WANG Z Y, SHANGGUAN W, et al. Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning[J]. Journal of Hydrology, 2021, 600. DOI:10.1016/j.jhydrol.2021.126698 .
49 LI Q L, ZHU Y H, SHANGGUAN W, et al. An attention-aware LSTM model for soil moisture and soil temperature prediction[J]. Geoderma, 2022, 409. DOI:10.1016/j.geoderma.2021.115651 .
50 YU J X, ZHANG X, XU L L, et al. A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J]. Agricultural Water Management, 2021, 245. DOI:10.1016/j.agwat.2020.106649 .
51 LI Q L, LI Z Y, SHANGGUAN W, et al. Improving soil moisture prediction using a novel encoder-decoder model with residual learning[J]. Computers and Electronics in Agriculture, 2022, 195. DOI:10.1016/j.compag.2022.106816 .
52 TAO L Z, HE X G, LI J J, et al. A multiscale long short-term memory model with attention mechanism for improving monthly precipitation prediction[J]. Journal of Hydrology, 2021, 602. DOI:10.1016/j.jhydrol.2021.126815 .
53 LIU J T, RAHMANI F, LAWSON K, et al. A multiscale deep learning model for soil moisture integrating satellite and in situ data[J]. Geophysical Research Letters, 2022, 49(7). DOI:10.1029/2021GL096847 .
54 MONTAVON G, SAMEK W, MÜLLER K R. Methods for interpreting and understanding deep neural networks[J]. Digital Signal Processing, 2018, 73. DOI:10.1016/j.dsp.2017.10.011 .
55 BECK H E, van DIJK A I J M, de ROO A, et al. Global-scale regionalization of hydrologic model parameters[J]. Water Resources Research, 2016, 52(5): 3 599-3 622.
56 MO S X, ZHU Y H, ZABARAS N, et al. Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media[J]. Water Resources Research, 2019, 55(1): 703-728.
57 SAWADA Y. Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(20). DOI:10.1029/2020JD032688 .
58 KRAFT B, JUNG M, KÖRNER M, et al. Towards hybrid modeling of the global hydrological cycle[J]. Hydrology and Earth System Sciences, 2022, 26(6): 1 579-1 614.
59 HUANG S, XIA J, WANG Y L, et al. Coupling machine learning into hydrodynamic models to improve river modeling with complex boundary conditions[J]. Water Resources Research, 2022, 58(10). DOI:10.1029/2022WR032183 .
60 HU X L, SHI L S, LIN G. The data-driven solution of energy imbalance-induced structural error in evapotranspiration models[J]. Journal of Hydrology, 2021, 597. DOI:10.1016/j.jhydrol.2021.126205 .
61 YIN J N, MEDELLÍN-AZUARA J, ESCRIVA-BOU A, et al. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change[J]. Science of the Total Environment, 2021, 769. DOI:10.1016/j.scitotenv.2020.144715 .
62 WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53(3). DOI:10.1145/3386252 .
63 SUN X, WANG B, WANG Z R, et al. Research progress on few-shot learning for remote sensing image interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2 387-2 402.
64 KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
65 KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2 318-2 331.
66 KONAPALA G, KAO S C, PAINTER S L, et al. Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous US[J]. Environmental Research Letters, 2020, 15(10). DOI:10.1088/1748-9326/aba927 .
67 XU T F, LONGYANG Q Q, TYSON C, et al. Hybrid physically based and deep learning modeling of a snow dominated, mountainous, Karst watershed[J]. Water Resources Research, 2022, 58(3). DOI:10.1029/2021WR030993 .
68 JIANG S J, ZHENG Y, SOLOMATINE D. Improving AI system awareness of geoscience knowledge: symbiotic integration of physical approaches and deep learning[J]. Geophysical Research Letters, 2020, 47(13). DOI:10.1029/2020GL088229 .
69 WU H Y, QIAO R. Physics-constrained deep learning for data assimilation of subsurface transport[J]. Energy and AI, 2021, 3. DOI:10.1016/j.egyai.2020.100044 .
70 READ J S, JIA X W, WILLARD J, et al. Process-guided deep learning predictions of lake water temperature[J]. Water Resources Research, 2019, 55(11): 9 173-9 190.
71 JIA X W, WILLARD J, KARPATNE A, et al. Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles[J]. ACM/IMS Transactions on Data Science, 2021, 2(3). DOI:10.1145/3447814 .
72 LU H K, GE Z H, SONG Y Y, et al. A temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecasting[J]. Neurocomputing, 2021, 427: 169-178.
73 CHEN H, HUANG J J, DASH S S, et al. A hybrid deep learning framework with physical process description for simulation of evapotranspiration[J]. Journal of Hydrology, 2022, 606. DOI:10.1016/j.jhydrol.2021.127422 .
74 ZHAO W L, GENTINE P, REICHSTEIN M, et al. Physics-constrained machine learning of evapotranspiration[J]. Geophysical Research Letters, 2019, 46(24): 14 496-14 507.
75 XIE K, LIU P, ZHANG J Y, et al. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127043 .
76 WANG N Z, ZHANG D X, CHANG H B, et al. Deep learning of subsurface flow via theory-guided neural network[J]. Journal of Hydrology, 2020, 584. DOI:10.1016/j.jhydrol.2020.124700 .
77 TARTAKOVSKY A M, MARRERO C O, PERDIKARIS P, et al. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems[J]. Water Resources Research, 2020, 56(5). DOI:10.1029/2019WR026731 .
78 HE T H, ZHANG D X. Deep learning of dynamic subsurface flow via theory-guided generative adversarial network[J]. Journal of Hydrology, 2021, 601. DOI:10.1016/j.jhydrol.2021.126626 .
79 VRUGT J A, DIKS C G H, GUPTA H V, et al. Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation[J]. Water Resources Research, 2005, 41(1). DOI:10.1029/2004WR003059 .
80 TIAN X J, XIE Z H, DAI A G, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D16). DOI:10.1029/2008JD011600 .
81 HE Q Z, BARAJAS-SOLANO D, TARTAKOVSKY G, et al. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport[J]. Advances in Water Resources, 2020, 141. DOI:10.1016/j.advwatres.2020.103610 .
82 WANG Y K, SHI L S, XU T F, et al. A nonparametric sequential data assimilation scheme for soil moisture flow[J]. Journal of Hydrology, 2021, 593. DOI:10.1016/j.jhydrol.2020.125865 .
83 TANG M, LIU Y M, DURLOFSKY L J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems[J]. Journal of Computational Physics, 2020, 413. DOI:10.1016/j.jcp.2020.109456 .
84 TANG M, LIU Y M, DURLOFSKY L J. Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376. DOI:10.1016/j.cma.2020.113636 .
85 ZHANG Q R, SHI L S, HOLZMAN M, et al. A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation[J]. Advances in Water Resources, 2019, 132. DOI:10.1016/j.advwatres.2019.103407 .
86 KING F, ERLER A R, FREY S K, et al. Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada[J]. Hydrology and Earth System Sciences, 2020, 24(10): 4 887-4 902.
87 TIAN J X, QIN J, YANG K, et al. Improving surface soil moisture retrievals through a novel assimilation algorithm to estimate both model and observation errors[J]. Remote Sensing of Environment, 2022, 269. DOI:10.1016/j.rse.2021.112802 .
88 KWON Y, FORMAN B A, AHMAD J A, et al. Exploring the utility of machine learning-based passive microwave brightness temperature data assimilation over terrestrial snow in high Mountain Asia[J]. Remote Sensing, 2019, 11(19). DOI:10.3390/rs11192265 .
89 XUE Y, FORMAN B A, REICHLE R H. Estimating snow mass in North America through assimilation of AMSR-E brightness temperature observations using the Catchment land surface model and support vector machines[J]. Water Resources Research, 2018, 54(9): 6 488-6 509.
90 BOUCHER M A, QUILTY J, ADAMOWSKI J. Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons[J]. Water Resources Research, 2020, 56(6). DOI:10.1029/2019WR026226 .
91 HOU J L, HUANG C L, CHEN W J, et al. Improving snow estimates through assimilation of MODIS fractional snow cover data using machine learning algorithms and the common land model[J]. Water Resources Research, 2021, 57(7). DOI:10.1029/2020WR029010 .
[1] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[2] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[3] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[4] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[5] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[6] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[9] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[10] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[11] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[12] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[13] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[14] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[15] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
阅读次数
全文


摘要