8 |
李德仁,张良培,夏桂松 .遥感大数据自动分析与数据挖掘[J].测绘学报,2014, 43(12):1 211-1 216.
|
9 |
GUO Huadong. A project on big Earth data science engineering[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 818-824.
|
|
郭华东. 地球大数据科学工程[J]. 中国科学院院刊, 2018, 33(8): 818-824.
|
10 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7 553): 436-444.
|
11 |
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7 743):195-204.
|
12 |
BORTNIK J, ENRICO C. Ten ways to apply machine learning in the Earth and space sciences[J]. Eos, 2021,102. DOI:10.1029/2021EO160257 .
|
13 |
LI Xin, LIU Feng, FANG Miao. Harmonizing models and observations: data assimilation in Earth system science[J]. Science China: Earth Sciences, 2020, 50(9): 1 185-1 194.
|
|
李新, 刘丰, 方苗.模型与观测的和弦: 地球系统科学中的数据同化[J]. 中国科学: 地球科学, 2020, 50(9): 1 185-1 194.
|
14 |
GEER A J. Learning earth system models from observations: machine learning or data assimilation?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 194). DOI:10.1098/rstq.2020.0089 .
|
15 |
BOUKABARA S A, KRASNOPOLSKY V M, PENNY S G, et al. Outlook for exploiting artificial intelligence in the earth and environmental sciences[J]. Bulletin of the American Meteorological Society, 2021, 102(5). DOI:10.1175/BAMS-D-20-0031.1 .
|
16 |
DÜBEN P, MODIGLIANI U, GEER A, et al. Machine learning at ECMWF: a roadmap for the next 10 years[R]. European Centre for Medium-Range Weather Forecasts, 2021: 878.
|
17 |
DUAN Q Y, PAPPENBERGER F, WOOD A, et al. Handbook of hydrometeorological ensemble forecasting[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020.
|
18 |
LONG D, BAI L L, YAN L, et al. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution[J]. Remote Sensing of Environment, 2019, 233. DOI:10.1016/j.rse.2019.111364 .
|
19 |
ABOWARDA A S, BAI L L, ZHANG C J, et al. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale[J]. Remote Sensing of Environment, 2021, 255. DOI:10.1016/j.rse.2021.112301 .
|
20 |
JUNG M, REICHSTEIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7 318): 951-954.
|
21 |
LIANG J Y, LIU X P, HUANG K N, et al. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance[J]. Remote Sensing of Environment, 2015, 156: 500-509.
|
22 |
DOBREVA I D, KLEIN A G. Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance[J]. Remote Sensing of Environment, 2011, 115(12): 3 355-3 366.
|
23 |
HOU J L, HUANG C L. Improving mountainous snow cover fraction mapping via artificial neural networks combined with MODIS and ancillary topographic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5 601-5 611.
|
24 |
BAEZ-VILLANUEVA O M, ZAMBRANO-BIGIARINI M, BECK H E, et al. RF-MEP: a novel Random Forest method for merging gridded precipitation products and ground-based measurements[J]. Remote Sensing of Environment, 2020, 239. DOI:10.1016/j.rse.2019.111606 .
|
25 |
PARISOUJ P, MOHEBZADEH H, LEE T. Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States[J]. Water Resources Management, 2020, 34(13): 4 113-4 131.
|
26 |
SAHOO S, RUSSO T A, ELLIOTT J, et al. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S[J]. Water Resources Research, 2017, 53(5): 3 878-3 895.
|
1 |
CHEN Shupeng. Earth system science: China’s progress·century outlook[M]. Beijing: China Science and Technology Press, 1998.
|
|
陈述彭. 地球系统科学:中国进展·世纪展望 [M].北京:中国科学技术出版社, 1998.
|
2 |
CHENG Guodong, LI Xin. Integrated research methods in watershed science[J]. Science China: Earth Sciences, 2015, 45(6):811-819.
|
|
程国栋,李新. 流域科学及其集成研究方法[J]. 中国科学:地球科学, 2015, 45(6):811-819.
|
3 |
TANG Qiuhong, LIU Xingcai, LI Zhe, et al. Integrated water systems model for terrestrial water cycle simulation[J]. Advances in Earth Science, 2019, 34(2):115-123.
|
|
汤秋鸿,刘星才,李哲,等. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展,2019, 34(2):115-123.
|
4 |
SHI Jiancheng, LEI Yonghui. Remote sensing and Earth system science[J]. Journal of Remote Sensing, 2016, 20(5):827-831.
|
|
施建成,雷永荟. 遥感与地球系统科学[J]. 遥感学报,2016, 20(5):827-831.
|
5 |
BAUER P, DUEBEN P D, HOEFLER T, et al. The digital revolution of Earth-system science[J]. Nature Computational Science, 2021, 1(2): 104-113.
|
6 |
HEY T, TANSLEY S, TOLLE K. The fourth paradigm: data-intensive scientific discovery[M]. Redmond, Washington: Microsoft Research, 2009.
|
7 |
GUO Huadong, WANG Lizhe, CHEN Fang, et al. Scientific big data and digital Earth[J]. Chinese Science Bulletin, 2014, 59(12): 1 047-1 054.
|
27 |
HE X G, CHANEY N W, SCHLEISS M, et al. Spatial downscaling of precipitation using adaptable random forests[J]. Water Resources Research, 2016, 52(10): 8 217-8 237.
|
28 |
LIU Y, JING W L, WANG Q, et al. Generating high-resolution daily soil moisture by using spatial downscaling techniques: a comparison of six machine learning algorithms[J]. Advances in Water Resources, 2020, 141. DOI:10.1016/j.advwatres.2020.103601 .
|
29 |
MAO H Z, KATHURIA D, DUFFIELD N, et al. Gap filling of high-resolution soil moisture for SMAP/sentinel-1: a two-layer machine learning-based framework[J]. Water Resources Research, 2019, 55(8): 6 986-7 009.
|
30 |
XU T R, GUO Z X, LIU S M, et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8 674-8 690.
|
31 |
IRVING K, KUEMMERLEN M, KIESEL J, et al. A high-resolution streamflow and hydrological metrics dataset for ecological modeling using a regression model[J]. Scientific Data, 2018, 5. DOI:10.1038/sdata.2018.224 .
|
32 |
TAO Y, HSU K, IHLER A, et al. A two-stage deep neural network framework for precipitation estimation from bispectral satellite information[J]. Journal of Hydrometeorology, 2018, 19(2): 393-408.
|
33 |
AKBARI ASANJAN A, YANG T T, HSU K, et al. Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(22): 12 543-12 563.
|
34 |
WANG C G, TANG G Q, GENTINE P. PrecipGAN: merging microwave and infrared data for satellite precipitation estimation using generative adversarial network[J]. Geophysical Research Letters, 2021, 48(5). DOI:10.1029/2020GL092032 .
|
35 |
KRATZERT F, KLOTZ D, BRENNER C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[J]. Hydrology and Earth System Sciences, 2018, 22(11): 6 005-6 022.
|
36 |
NI L L, WANG D, SINGH V P, et al. Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583. DOI:10.1016/j.jhydrol.2019.124296 .
|
7 |
郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球[J]. 科学通报, 2014, 59(12): 1 047-1 054.
|
8 |
LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1 211-1 216.
|
37 |
FANG K, PAN M, SHEN C P. The value of SMAP for long-term soil moisture estimation with the help of deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2 221-2 233.
|
38 |
A Y L, WANG G Q, HU P, et al. Root-zone soil moisture estimation based on remote sensing data and deep learning[J]. Environmental Research, 2022, 212. DOI:10.1016/j.envres.2022.113278 .
|
39 |
ZHANG Q, YUAN Q, JIN T, et al. SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022[J]. Earth System Science Data, 2022, 14(10): 4 473-4 488.
|
40 |
XIA M, LIU W A, SHI B C, et al. Cloud/snow recognition for multispectral satellite imagery based on a multidimensional deep residual network[J]. International Journal of Remote Sensing, 2019, 40(1): 156-170.
|
41 |
HOU J L, HUANG C L, ZHANG Y, et al. Reconstructing a gap-free MODIS normalized difference snow index product using a long short-term memory network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
|
42 |
YATHEENDRADAS S, KUMAR S. A novel machine learning-based gap-filling of fine-resolution remotely sensed snow cover fraction data by combining downscaling and regression[J]. Journal of Hydrometeorology, 2022, 23(5): 637-658.
|
43 |
WANG J W, YUAN Q Q, SHEN H F, et al. Estimating snow depth by combining satellite data and ground-based observations over Alaska: a deep learning approach[J]. Journal of Hydrology, 2020, 585. DOI:10.1016/j.jhydrol.2020.124828 .
|
44 |
ZHU L L, ZHANG Y H, WANG J G, et al. Downscaling snow depth mapping by fusion of microwave and optical remote-sensing data based on deep learning[J]. Remote Sensing, 2021, 13(4). DOI:10.3390/rs13040584 .
|
45 |
CHEN Z J, ZHU Z C, JIANG H, et al. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods[J]. Journal of Hydrology, 2020, 591. DOI:10.1016/j.jhydrol.2020.125286 .
|
46 |
WANG X S, GAO B, WANG X S. Investigating the ability of deep learning on actual evapotranspiration estimation in the scarcely observed region[J]. Journal of Hydrology, 2022, 607. DOI:10.1016/j.jhydrol.2022.127506 .
|
47 |
DONG J, ZHU Y J, JIA X X, et al. Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China[J]. Journal of Hydrology, 2022, 604. DOI:10.1016/j.jhydrol.2021.127207 .
|
48 |
LI Q L, WANG Z Y, SHANGGUAN W, et al. Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning[J]. Journal of Hydrology, 2021, 600. DOI:10.1016/j.jhydrol.2021.126698 .
|
49 |
LI Q L, ZHU Y H, SHANGGUAN W, et al. An attention-aware LSTM model for soil moisture and soil temperature prediction[J]. Geoderma, 2022, 409. DOI:10.1016/j.geoderma.2021.115651 .
|
50 |
YU J X, ZHANG X, XU L L, et al. A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J]. Agricultural Water Management, 2021, 245. DOI:10.1016/j.agwat.2020.106649 .
|
51 |
LI Q L, LI Z Y, SHANGGUAN W, et al. Improving soil moisture prediction using a novel encoder-decoder model with residual learning[J]. Computers and Electronics in Agriculture, 2022, 195. DOI:10.1016/j.compag.2022.106816 .
|
52 |
TAO L Z, HE X G, LI J J, et al. A multiscale long short-term memory model with attention mechanism for improving monthly precipitation prediction[J]. Journal of Hydrology, 2021, 602. DOI:10.1016/j.jhydrol.2021.126815 .
|
53 |
LIU J T, RAHMANI F, LAWSON K, et al. A multiscale deep learning model for soil moisture integrating satellite and in situ data[J]. Geophysical Research Letters, 2022, 49(7). DOI:10.1029/2021GL096847 .
|
54 |
MONTAVON G, SAMEK W, MÜLLER K R. Methods for interpreting and understanding deep neural networks[J]. Digital Signal Processing, 2018, 73. DOI:10.1016/j.dsp.2017.10.011 .
|
55 |
BECK H E, van DIJK A I J M, de ROO A, et al. Global-scale regionalization of hydrologic model parameters[J]. Water Resources Research, 2016, 52(5): 3 599-3 622.
|
56 |
MO S X, ZHU Y H, ZABARAS N, et al. Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media[J]. Water Resources Research, 2019, 55(1): 703-728.
|
57 |
SAWADA Y. Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(20). DOI:10.1029/2020JD032688 .
|
58 |
KRAFT B, JUNG M, KÖRNER M, et al. Towards hybrid modeling of the global hydrological cycle[J]. Hydrology and Earth System Sciences, 2022, 26(6): 1 579-1 614.
|
59 |
HUANG S, XIA J, WANG Y L, et al. Coupling machine learning into hydrodynamic models to improve river modeling with complex boundary conditions[J]. Water Resources Research, 2022, 58(10). DOI:10.1029/2022WR032183 .
|
60 |
HU X L, SHI L S, LIN G. The data-driven solution of energy imbalance-induced structural error in evapotranspiration models[J]. Journal of Hydrology, 2021, 597. DOI:10.1016/j.jhydrol.2021.126205 .
|
61 |
YIN J N, MEDELLÍN-AZUARA J, ESCRIVA-BOU A, et al. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change[J]. Science of the Total Environment, 2021, 769. DOI:10.1016/j.scitotenv.2020.144715 .
|
62 |
WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53(3). DOI:10.1145/3386252 .
|
63 |
SUN X, WANG B, WANG Z R, et al. Research progress on few-shot learning for remote sensing image interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2 387-2 402.
|
64 |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
|
65 |
KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2 318-2 331.
|
66 |
KONAPALA G, KAO S C, PAINTER S L, et al. Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous US[J]. Environmental Research Letters, 2020, 15(10). DOI:10.1088/1748-9326/aba927 .
|
67 |
XU T F, LONGYANG Q Q, TYSON C, et al. Hybrid physically based and deep learning modeling of a snow dominated, mountainous, Karst watershed[J]. Water Resources Research, 2022, 58(3). DOI:10.1029/2021WR030993 .
|
68 |
JIANG S J, ZHENG Y, SOLOMATINE D. Improving AI system awareness of geoscience knowledge: symbiotic integration of physical approaches and deep learning[J]. Geophysical Research Letters, 2020, 47(13). DOI:10.1029/2020GL088229 .
|
69 |
WU H Y, QIAO R. Physics-constrained deep learning for data assimilation of subsurface transport[J]. Energy and AI, 2021, 3. DOI:10.1016/j.egyai.2020.100044 .
|
70 |
READ J S, JIA X W, WILLARD J, et al. Process-guided deep learning predictions of lake water temperature[J]. Water Resources Research, 2019, 55(11): 9 173-9 190.
|
71 |
JIA X W, WILLARD J, KARPATNE A, et al. Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles[J]. ACM/IMS Transactions on Data Science, 2021, 2(3). DOI:10.1145/3447814 .
|
72 |
LU H K, GE Z H, SONG Y Y, et al. A temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecasting[J]. Neurocomputing, 2021, 427: 169-178.
|
73 |
CHEN H, HUANG J J, DASH S S, et al. A hybrid deep learning framework with physical process description for simulation of evapotranspiration[J]. Journal of Hydrology, 2022, 606. DOI:10.1016/j.jhydrol.2021.127422 .
|
74 |
ZHAO W L, GENTINE P, REICHSTEIN M, et al. Physics-constrained machine learning of evapotranspiration[J]. Geophysical Research Letters, 2019, 46(24): 14 496-14 507.
|
75 |
XIE K, LIU P, ZHANG J Y, et al. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127043 .
|
76 |
WANG N Z, ZHANG D X, CHANG H B, et al. Deep learning of subsurface flow via theory-guided neural network[J]. Journal of Hydrology, 2020, 584. DOI:10.1016/j.jhydrol.2020.124700 .
|
77 |
TARTAKOVSKY A M, MARRERO C O, PERDIKARIS P, et al. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems[J]. Water Resources Research, 2020, 56(5). DOI:10.1029/2019WR026731 .
|
78 |
HE T H, ZHANG D X. Deep learning of dynamic subsurface flow via theory-guided generative adversarial network[J]. Journal of Hydrology, 2021, 601. DOI:10.1016/j.jhydrol.2021.126626 .
|
79 |
VRUGT J A, DIKS C G H, GUPTA H V, et al. Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation[J]. Water Resources Research, 2005, 41(1). DOI:10.1029/2004WR003059 .
|
80 |
TIAN X J, XIE Z H, DAI A G, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D16). DOI:10.1029/2008JD011600 .
|
81 |
HE Q Z, BARAJAS-SOLANO D, TARTAKOVSKY G, et al. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport[J]. Advances in Water Resources, 2020, 141. DOI:10.1016/j.advwatres.2020.103610 .
|
82 |
WANG Y K, SHI L S, XU T F, et al. A nonparametric sequential data assimilation scheme for soil moisture flow[J]. Journal of Hydrology, 2021, 593. DOI:10.1016/j.jhydrol.2020.125865 .
|
83 |
TANG M, LIU Y M, DURLOFSKY L J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems[J]. Journal of Computational Physics, 2020, 413. DOI:10.1016/j.jcp.2020.109456 .
|
84 |
TANG M, LIU Y M, DURLOFSKY L J. Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376. DOI:10.1016/j.cma.2020.113636 .
|
85 |
ZHANG Q R, SHI L S, HOLZMAN M, et al. A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation[J]. Advances in Water Resources, 2019, 132. DOI:10.1016/j.advwatres.2019.103407 .
|
86 |
KING F, ERLER A R, FREY S K, et al. Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada[J]. Hydrology and Earth System Sciences, 2020, 24(10): 4 887-4 902.
|
87 |
TIAN J X, QIN J, YANG K, et al. Improving surface soil moisture retrievals through a novel assimilation algorithm to estimate both model and observation errors[J]. Remote Sensing of Environment, 2022, 269. DOI:10.1016/j.rse.2021.112802 .
|
88 |
KWON Y, FORMAN B A, AHMAD J A, et al. Exploring the utility of machine learning-based passive microwave brightness temperature data assimilation over terrestrial snow in high Mountain Asia[J]. Remote Sensing, 2019, 11(19). DOI:10.3390/rs11192265 .
|
89 |
XUE Y, FORMAN B A, REICHLE R H. Estimating snow mass in North America through assimilation of AMSR-E brightness temperature observations using the Catchment land surface model and support vector machines[J]. Water Resources Research, 2018, 54(9): 6 488-6 509.
|
90 |
BOUCHER M A, QUILTY J, ADAMOWSKI J. Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons[J]. Water Resources Research, 2020, 56(6). DOI:10.1029/2019WR026226 .
|
91 |
HOU J L, HUANG C L, CHEN W J, et al. Improving snow estimates through assimilation of MODIS fractional snow cover data using machine learning algorithms and the common land model[J]. Water Resources Research, 2021, 57(7). DOI:10.1029/2020WR029010 .
|