地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 388 -400. doi: 10.11867/j.issn.1001-8166.2023.015

青藏高原综合科学考察研究 上一篇    下一篇

全新世青藏高原及周边典型湖泊演化模拟
李育( ), 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣   
  1. 兰州大学西部环境教育部重点实验室,兰州大学资源环境学院,兰州大学干旱区 水循环与水资源研究中心,甘肃 兰州 730000
  • 收稿日期:2022-10-23 修回日期:2023-01-15 出版日期:2023-04-04
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“湖泊演变及气候变化响应专题”(2019QZKK0202);国家自然科学基金面上项目“河西走廊全新世古湖泊无机碳来源与沉积过程研究”(42077415)

Holocene Lake Evolution Simulations for Typical Lakes in the Qinghai-Tibet Plateau and Its Surrounding Areas

Yu LI( ), Junjie DUAN, Haiye LI, Mingjun GAO, Yuxin ZHANG, Yaxin XUE   

  1. Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,Lanzhou 730000, China
  • Received:2022-10-23 Revised:2023-01-15 Online:2023-04-04 Published:2023-04-18
  • About author:LI Yu (1981-), male, Lanzhou City, Gansu Province, Professor. Research area includes paleoclimate change.E-mail: liyu@lzu.edu.cn
  • Supported by:
    the Second Comprehensive Scientific Expedition to the Qinghai-Tibet Plateau “Special topic on lake evolution and climate change response”(2019QZKK0202);The National Natural Science Foundation of China “Research on the source and Deposition Process of inorganic carbon in Ancient Lakes of Hexi Corridor in Holocene”(42077415)

湖泊在区域水循环和生态系统演化中起着重要作用。在以往的湖泊演化研究中多利用湖泊沉积物代用指标重建湖泊与气候变化过程,缺乏对湖泊水循环特征的定量研究。基于瞬态气候演变模型、特征时段流域和湖泊水量,以及能量平衡模型,对青藏高原及周边6个典型湖泊进行了水量平衡计算和湖泊演化模拟。结果表明:小柴达木湖和罗布泊全新世期间降水和蒸发的变率较小;色林错和纳木错早中全新世降水和蒸发的变率较大,主要受控于温度和净辐射变化;青海湖和猪野泽早中和中晚全新世降水和蒸发变率接近。系统分析了全新世期间青藏高原不同气候区湖泊水循环要素演化过程,有助于理解该区湖泊演化的古气候学机理。

Lakes play an essential role in the evolution of regional water cycles and ecosystems. In previous studies on lake evolution, most lake sediment proxy indicators have been used to reconstruct lake and climate change processes. However, there is a lack of quantitative research on the lake water cycle characteristics. Based on the water balance model for watersheds and lakes in distinct periods and the lake energy balance model based on the simulation of the transient climate, water balance calculations and lake evolution simulations for six typical lakes in the Qinghai-Tibet Plateau and its surrounding areas were carried out in this study. The results showed that the precipitation and evaporation variabilities in Xiao Qaidam Lake and Lop Nur were relatively small during the Holocene. The precipitation and evaporation variabilities in Selinco and Namco were relatively large during the early-middle Holocene, mainly controlled by temperature and net radiation changes. The precipitation and evaporation variabilities in Qinghai Lake and Zhuyeze were close during the early and mid-late Holocene. This study systematically analyzed and calculated the evolution of lake water cycle elements in different climatic regions of the Qinghai-Tibet Plateau during the Holocene, which will help to understand the paleoclimatic mechanism of lake evolution in this region.

中图分类号: 

图1 青藏高原及周边典型湖泊位置
Fig. 1 Location of typical lakes in Qinghai-Tibet Plateau and its surrounding areas
表1 全新世期间流域和湖泊水循环特征变率与 TraCE模拟实验结果的对比 (%)
Table 1 Comparison of variation of watershed and lake water cycle characteristics and TraCE model results during Holocene
图2 全新世特征时期不同湖泊湖面范围
Fig. 2 Surface area of different lakes in Holocene characteristic periods
图3 模拟的全新世期间青藏高原及周边典型湖泊水循环特征与古气候记录对比
蒸发、降水、径流和湖泊水位模拟所对应的曲线,灰色为原始数据曲线,彩色为经过Spline smoothing(光滑样条法)平滑后的曲线。除蒸发、降水、径流和湖泊水位模拟的曲线外,由左至右,从上至下对应的指标曲线为:猪野泽下游青土湖剖面中的C/N和TOC 2 ;TraCE模拟的东亚夏季风指数 38 ;65°N 6月太阳辐射 39 ;青海湖的TOC和TN数据 14 ;亚洲夏季风指数 40 ;纳木错的TOC和TN数据 31 ;色林错的δ 18O和δ 13C数据 32 ;小柴达木湖DCD03剖面的碎屑矿物(石英,绿泥石,白云石和长石)、碳酸盐含量和平均湿润指数 19 ;罗布泊的Mg 2+/Ca 2+和碳酸盐含量 18
Fig. 3 Comparison of simulated water cycle characteristics and paleoclimatic records over the Tibetan Plateau and its surrounding lakes during the Holocene
The curves corresponding to evaporation, precipitation, runoff and lake level simulations in the six figures are the original data curves in gray and the curves smoothed by Spline smoothing in color. In addition to the curves for evaporation, precipitation, runoff, and lake level simulations, the index curves from left to right and from top to bottom are: TOC and C/N in the Qingtu Lake profile located downstream of Zhuyeze 2 ; the East Asian summer monsoon index simulated by TraCE 38 ; solar radiation in June at 65°N 39 ; TOC and TN of Qinghai Lake 14 ; Asian summer monsoon index 40 ; TOC and TN of Namco 31 ; δ 18O and δ 13C of Selinco 32 ; detrital minerals (quartz, chlorite, dolomite and feldspar), carbonate contents, and mean wetness index of the DCD03 profile of Xiao Qaidam Lake 19 ; Mg 2+/Ca 2+ and carbonate contents of Lop Nur 18
1 HARRISON S P, DIGERFELDT G. European lakes as palaeohydrological and palaeoclimatic indicators[J]. Quaternary Science Reviews, 1993, 12(4): 233-248.
2 LI Yu, LIU Yuan. Long-term reconstructions and simulations of the hydrological cycle in the inland rivers, arid China: a case study of the Shiyang River drainage basin[J]. Advances in Earth Science, 2017, 32(7): 731-743.
李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟: 以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
3 LIU Y, LI Y. Quantitative reconstruction of precipitation and runoff during MIS 5a, MIS 3a, and Holocene, arid China[J]. Theoretical and Applied Climatology, 2017, 130(3): 747-754.
4 WEI Zhiqiao. The Holocene juyanze paleolake evolution process and its possible forcing mechanisms[D]. Lanzhou: Lanzhou University, 2019.
魏志巧. 古居延泽全新世湖泊演化过程及其影响机制[D]. 兰州: 兰州大学, 2019.
5 LI Yu, ZHANG Yuxin, ZHANG Xinzhong, et al. A continuous simulation of Holocene effective moisture change represented by variability of virtual lake level in East and Central Asia[J]. Science China Earth Sciences, 2020, 63(8): 1 161-1 175.
李育, 张宇欣, 张新中, 等. 以东亚及中亚地区虚拟湖泊水位变化为代表的全新世有效水分变化的连续模拟[J]. 中国科学:地球科学, 2020, 50(8): 1 106-1 121.
6 LI Y, MORRILL C. Multiple factors causing Holocene Lake-level change in monsoonal and arid central Asia as identified by model experiments[J]. Climate Dynamics, 2010, 35(6): 1 119-1 132.
7 LI Y, MORRILL C. Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations[J]. Quaternary Science Reviews, 2013, 60: 1-12.
8 MORRILL C. The influence of Asian summer monsoon variability on the water balance of a Tibetan Lake[J]. Journal of Paleolimnology, 2004, 32(3): 273-286.
9 CHEN F H, CHEN J H, HUANG W, et al. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
10 CHEN F H, CHEN J, HUANG W. Weakened East Asian summer monsoon triggers increased precipitation in Northwest China[J]. Science China Earth Sciences, 2021, 64(5): 835-837.
11 AN C B, LU Y B, ZHAO J J, et al. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): implications for central Asia[J]. The Holocene, 2012, 22(1): 43-52.
12 LI G Q, SHE L L, JIN M, et al. The spatial extent of the East Asian summer monsoon in arid NW China during the Holocene and Last Interglaciation[J]. Global and Planetary Change, 2018, 169: 48-65.
13 CHEN H, ZHU L P, HOU J Z, et al. Westerlies effect in Holocene paleoclimate records from the central Qinghai-Tibet Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 598. DOI:10.1016/j.palaeo.2022.111036 .
14 SHEN J, LIU X Q, WANG S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 2005, 136(1): 131-140.
15 LIU X J, LAI Z P, MADSEN D, et al. Last deglacial and Holocene Lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3): 245-257.
16 LI Y, WANG N A, CHENG H Y, et al. Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China[J]. Boreas, 2009, 38(2): 349-361.
17 LI Y, WANG N A, LI Z L, et al. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin[J]. Chinese Science Bulletin, 2011, 56(6): 535-546.
18 LIU C, ZHANG J F, JIAO P, et al. The Holocene history of Lop Nur and its palaeoclimate implications[J]. Quaternary Science Reviews, 2016, 148: 163-175.
19 GAO C L, YU J Q, MIN X Y, et al. The sedimentary evolution of Da Qaidam Salt Lake in Qaidam Basin, northern Tibetan Plateau: implications for hydro-climate change and the formation of pinnoite deposit[J]. Environmental Earth Sciences, 2019, 78(15). DOI:10.1007/s12665-019-8480-0 .
20 QIANG M R, SONG L, JIN Y X, et al. A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: hydroclimatic evolution and changes in atmospheric circulation[J]. Quaternary Science Reviews, 2017, 162: 72-87.
21 WÜNNEMANN B, WAGNER J, ZHANG Y Z, et al. Implications of diverse sedimentation patterns in Hala Lake, Qinghai Province, China for reconstructing Late Quaternary climate[J].Journal of Paleolimnology, 2012, 48(4): 725-749.
22 YAN D D, WÜNNEMANN B. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records[J]. Quaternary Science Reviews, 2014, 95: 95-114.
23 QIAO B J, ZHU L P, YANG R M. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau[J]. Remote Sensing of Environment, 2019, 222: 232-243.
24 ZHANG G Q, CHEN W F, XIE H J. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and landsat missions[J]. Geophysical Research Letters, 2019, 46(22): 13 107-13 118.
25 CHEN F H, ZHANG J F, LIU J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review[J]. Quaternary Science Reviews, 2020, 243. DOI:10.1016/j.quascirev.2020.106444 .
26 SONG Xingyu, WEN Lijuan, LI Maoshan, et al. Comparative study on applicability of different lake models to typical lakes in Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39(2): 213-225.
宋兴宇, 文莉娟, 李茂善, 等. 不同湖泊模式对青藏高原典型湖泊适用性对比研究[J]. 高原气象, 2020, 39(2): 213-225.
27 YANG Zesu, ZHANG Yu, ZHANG Qiang, et al. Inter-annual variability of evapotranspiration and its response towestly and monsoon circulation over the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2022, 65(8): 2 813-2 827.
杨泽粟, 张宇, 张强, 等. 青藏高原蒸散年际变化及其对西风和季风环流的响应[J]. 地球物理学报, 2022, 65(8): 2 813-2 827.
28 MA Yaoming, HU Zeyong, TIAN Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.
马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
29 CHEN Zhaoen, LIN Qiuyan. Significance of neotectonic movement of lake swelling and contraction in Qinghai-Tibet Plateau [J]. Earthquake, 1993(1): 31-40,52.
陈兆恩, 林秋雁. 青藏高原湖泊涨缩的新构造运动意义[J]. 地震, 1993(1): 31-40,52.
30 HE F. Simulating transient climate evolution of the last deglaciation with CCSM 3[D]. Wisconsin: University of Wisconsin, 2011.
31 ZHU Liping, WANG Junbo, LIN Xiao, et al. Environmental changes reflected by core sediments since 8.4ka in Nam Co, central Tibet of China[J]. Quaternary Sciences, 2007, 27(4): 588-597.
朱立平, 王君波, 林晓, 等. 西藏纳木错深水湖芯反映的8.4ka以来气候环境变化[J]. 第四纪研究, 2007, 27(4): 588-597.
32 GU Zhaoyan, LIU Jiaqi, YUAN Baoyin, et al. Monsoon changes over the Tibetan Plateau in the past 12000 years: evidence from the geochemistry of Selincuo sediments [J]. Chinese Science Bulletin, 1993(1): 61-64.
顾兆炎, 刘嘉麒, 袁宝印, 等. 12000年来青藏高原季风变化——色林错沉积物地球化学的证据[J]. 科学通报, 1993(1): 61-64.
33 ZHENG Weipeng, MAN Wenmin, SUN Yong, et al. Short commentary on CMIP6 Paleoclimate Modelling Intercomparison Project phase 4(PMIP4)[J]. Climate Change Research, 2019, 15(5): 510-518.
郑伟鹏, 满文敏, 孙咏, 等. 第四次国际古气候模拟比较计划(PMIP4)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 510-518.
34 GUO Linan, WU Yanhong, ZHENG Hongxing, et al. Lake ice phenology dataset across the Tibetan Plateau during 1978-2016[DS]. National Data Center for Tibetan Plateau Science, 2022. .
郭立男, 吴艳红, ZHENG Hongxing, 等. 青藏高原湖冰物候数据集(1978—2016)[DS]. 国家青藏高原科学数据中心, 2022. .
35 WANG Zhiying, WU Yanhong, CHANG Jun, et al. Temporal and spatial variation of lake ice phenology and its influencing factors in the Tibetan Plateau[J]. Journal of Beijing University of Technology, 2017, 43(5): 701-709.
王智颖, 吴艳红, 常军, 等. 青藏高原湖冰物候的时空变化及其影响因素[J]. 北京工业大学学报, 2017, 43(5): 701-709.
36 YAN Yunpeng, XU Hui, LIU Gang, et al. Analysis of the variations of the lake ice phenology in the Pangong Lake area from 2013 to 2017: remote sensing survey of the cryosphere in the high altitude and alpine region, West China(Ⅰ)[J]. Remote Sensing for Land & Resources, 2019, 31(3): 209-215.
燕云鹏, 徐辉, 刘刚, 等. 2013—2017年班公湖地区冷季湖泊冰情变化分析: 中国西部高寒高海拔地区冰冻圈遥感调查(一)[J]. 国土资源遥感, 2019, 31(3): 209-215.
37 YANG Jinhu, YANG Xiaoling, ZHANG Chunyan, et al. Variation characterisrtics of ice days in Shiyang River Basin[J]. Arid Land Geography, 2016, 39(4): 712-720.
杨金虎, 杨晓玲, 张春燕, 等. 石羊河流域结冰日的变化特征[J]. 干旱区地理, 2016, 39(4): 712-720.
38 LIU Z, OTTO-BLIESNER B L, HE F, et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming[J]. Science, 2009, 325(5 938): 310-314.
39 BERGER A, LOUTRE M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317.
40 AN Z, COLMAN S, ZHOU W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2. DOI:10.1038/srep00619 .
41 LI Yu, WANG Yue, ZHANG Chengqi, et al. Changes of sedimentary facies and Holocene environments in the middle reaches of inland rivers, arid China: a case study of the Shiyang River[J]. Geographical Research, 2014, 33(10): 1 866-1 880.
李育, 王岳, 张成琦, 等. 干旱区内陆河流域中游地区全新世沉积相变与环境变化: 以石羊河流域为例[J]. 地理研究, 2014, 33(10): 1 866-1 880.
42 QIN Jiaming, YUAN Daoxian, CHENG Hai, et al. Neo-Andromeda and climate abrupt events in early and middle Holocene: oxygen isotopic records of Stalagmites in Maolan, Guizhou Province[J]. Science in China Series D: Earth Sciences, 2004, 34(1): 69-74.
覃嘉铭, 袁道先, 程海, 等. 新仙女木及全新世早中期气候突变事件: 贵州茂兰石笋氧同位素记录[J]. 中国科学D辑:地球科学, 2004, 34(1): 69-74.
43 XUE Hongpan, ZENG Fangming. Geochemical characteristics of aeolian deposits on the eastern shore of Qinghai Lake and their paleoclimatic implications since the Holocene[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1 198-1 207.
薛红盼, 曾方明. 青海湖东岸全新世风成沉积地球化学特征及其古气候意义[J]. 沉积学报, 2021, 39(5): 1 198-1 207.
44 SUN Yafang. Holocene palaeoclimate chages in the regions of Qinghai and Gansu Province[D]. Lanzhou: Lanzhou University, 2008.
孙亚芳. 甘青地区全新世气候变化研究[D]. 兰州: 兰州大学, 2008.
45 DU Dingding, MUGHAL M S, BLAISE D, et al. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since Last Glacial Maximum from Selin Co Lake sediments, central Qinghai-Tibetan Plateau[J]. Arid Land Geography, 2019, 42(3): 551-558.
杜丁丁, Muhammad Saleem Mughal, Blaise Dembele, 等. 青藏高原中部色林错湖泊沉积物色度反映末次冰盛期以来区域古气候演化[J]. 干旱区地理, 2019, 42(3): 551-558.
46 XUE Xiangyan, WANG Naiang. Paleoclimatic estimate during the special phases of Holocene in Shiyang River drainage[J]. Journal of Arid Land Resources and Environment, 2008, 22(12): 103-107.
薛翔燕, 王乃昂. 石羊河流域全新世不同时段降水量的估算[J]. 干旱区资源与环境, 2008, 22(12): 103-107.
47 DICKSON D R, YEPSEN J H, HALES J V. Saturated vapor pressures over Great Salt Lake brine[J]. Journal of Geophysical Research, 1965, 70(2): 500-503.
48 HERZSCHUH U, CAO X Y, LAEPPLE T, et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China[J]. Nature Communications, 2019, 10(1): 1-8.
49 CHIANG J C H, FUNG I Y, WU C H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111-129.
50 WANG Keli, JIANG Hao, ZHAO Hongyan. Atmospheric water vapor transport from westerly and monsoon over the Northwest China[J]. Advances in Water Science, 2005, 16(3): 432-438.
王可丽, 江灏, 赵红岩. 西风带与季风对中国西北地区的水汽输送[J]. 水科学进展, 2005, 16(3): 432-438.
51 LI Xiumei, HOU Juzhi, WANG Mingda, et al. Influence of monsoon and westerlies on Holocene climate change in the Tibetan Plateau: isotopic evidence[J]. Quaternary Sciences, 2019, 39(3): 678-686.
李秀美, 侯居峙, 王明达, 等. 季风与西风对青藏高原全新世气候变化的影响: 同位素证据[J]. 第四纪研究, 2019, 39(3): 678-686.
52 ZHANG Y X, LI Y. Three modes of climate change since the Last Glacial Maximum in arid and semi-arid regions of the Asian continent[J].Journal of Geographical Sciences, 2022, 32(2): 195-213.
53 LI Jijun. The patterns of environmental changes since late Pleistocene in northwestern China[J]. Quaternary Sciences, 1990, 10(3): 197-204.
李吉均. 中国西北地区晚更新世以来环境变迁模式[J]. 第四纪研究, 1990, 10(3): 197-204.
54 CHEN F H, YU Z C, YANG M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364.
55 WANG Y J, CHENG H, EDWARDS R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7 182): 1 090-1 093.
56 ZHAO Y, YU Z C, CHEN F H, et al. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, Northwest China[J]. Review of Palaeobotany and Palynology, 2007, 145(3/4): 275-288.
57 HUANG X Z, CHEN F H, FAN Y X, et al. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1/2): 19-27.
58 LU Y B, AN C B, ZHAO J J. An isotopic study on water system of Lake Barkol and its implication for Holocene climate dynamics in arid central Asia[J]. Environmental Earth Sciences, 2015, 73(3): 1 377-1 383.
59 YANG Yaping. Climate and environment changes recorded by sediments from Bangong Co in Tibet since last deglaciation[D]. Lanzhou: Lanzhou University, 2016.
阳亚平. 末次冰消期以来西藏班公错沉积物记录的气候与环境变化[D]. 兰州: 兰州大学, 2016.
60 MÜGLER I, GLEIXNER G, GÜNTHER F, et al. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet[J]. Journal of Paleolimnology, 2010, 43(4): 625-648.
61 CHEN Shaoyong, LIN Shu, GUO Kaizhong. Relationship between precipitation anomaly in September of Western China and 700 hPa wind field in East Asia[J]. Plateau Meteorology, 2010, 29(6): 1 501-1 506.
陈少勇, 林纾, 郭凯忠. 中国西部9月降水与东亚700 hPa风场的关系[J]. 高原气象, 2010, 29(6): 1 501-1 506.
62 LI Y, WANG N A, ZHANG C Q, et al. Early Holocene environment at a key location of the northwest boundary of the Asian summer monsoon: a synthesis on chronologies of Zhuye Lake, Northwest China[J]. Journal of Arid Land, 2014, 6(5): 511-528.
[1] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[2] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[3] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[4] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[5] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[6] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[7] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[8] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[9] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[10] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[11] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[12] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[13] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[14] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[15] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
阅读次数
全文


摘要