地球科学进展 doi: 10.11867/j.issn.1001-8166.2023.015

   

全新世青藏高原及周边典型湖泊演化模拟
李育,段俊杰,李海烨,高铭君,张宇欣,薛雅欣   
  1. (兰州大学西部环境教育部重点实验室,兰州大学资源环境学院,兰州大学干旱区水循环与水资源研究中心,甘肃 兰州 730000)
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“湖泊演变及气候变化响应专题”(编号:2019QZKK0202);国家自然科学基金面上项目“河西走廊全新世古湖泊无机碳来源与沉积过程研究”(编号:42077415)资助.

Holocene Lake Evolution Simulations for Typical Lakes in the Qinghai-Tibet Plateau and Its Surrounding Areas

LI Yu, DUAN Junjie, LI Haiye, GAO Mingjun, ZHANG Yuxin, XUE Yaxin   

  1. ( Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,Lanzhou 730000, China )
  • About author:LI Yu (1981-), male, Lanzhou City, Gansu Province, Professor. Research area includes paleoclimate change. E-mail: liyu@lzu.edu.cn
  • Supported by:
    Project supported by the second Comprehensive Scientific expedition to the Qinghai-Tibet Plateau “Special Topic on Lake Evolution and Climate Change Response” (No.2019QZKK0202); The National Natural Science Foundation of China “Research on the Source and deposition process of Inorganic Carbon in Ancient Lakes of Hexi Corridor in Holocene” (Grant No.42077415).
湖泊在区域水循环和生态系统演化中起着重要作用。在以往的湖泊演化研究中多利用湖泊沉积物代用指标重建湖泊与气候变化过程,缺乏对湖泊水循环特征的定量研究。基于特征时段流域、湖泊水量平衡模型以及瞬态气候演变模型的湖泊能量平衡模型,对青藏高原及周边6 个典型湖泊进行了水量平衡计算和湖泊演化模拟。结果表明:小柴达木湖和罗布泊全新世期间降水和蒸发的变率较小;色林错和纳木错早中全新世降水和蒸发的变率较大,主要受控于温度和净辐射变化;青海湖和猪野泽早中和中晚全新世降水和蒸发变率接近。系统分析了全新世期间青藏高原不同气候区湖泊水循环要素演化过程,有助于理解该区湖泊演化的古气候学机理。
Lakes play an essential role in the evolution of regional water cycles and ecosystems. In previous studies on lake evolution, most lake sediment proxy indicators have been used to reconstruct lake and climate change processes. However, there is a lack of quantitative research on the lake water cycle characteristics. Based on the water balance model for watersheds and lakes in distinct periods and the lake energy balance model based on the simulation of the transient climate, water balance calculations and lake evolution simulations for six typical lakes in the Qinghai-Tibet Plateau and its surrounding areas were carried out in this study. The results showed that the precipitation and evaporation variabilities in Xiao Qaidam Lake and Lop Nur were relatively
small during the Holocene. The precipitation and evaporation variability in Selinco and Namco were relatively large during the early–middle Holocene and were mainly controlled by temperature and net radiation changes. The precipitation and evaporation variabilities in Qinghai Lake and Zhuyeze were similar during the early and mid–late Holocene. This study systematically analyzed and calculated the evolution of lake water cycle elements in different climatic regions of the Qinghai-Tibet Plateau during the Holocene, which will help to understand the paleoclimatic mechanism of lake evolution in this region.

中图分类号: 

图2 全新世特征时期不同湖泊湖面范围
Fig.2 Surface area of different lakes in Holocene characteristic periods
图1 青藏高原及周边典型湖泊位置
Fig.1 Location of typical lakes in Qinghai-Tibet Plateau and its surrounding areas
图3 模拟的全新世期间青藏高原及周边典型湖泊水循环特征与古气候记录对比 蒸发、降水、径流和湖泊水位模拟所对应的曲线,灰色为原始数据曲线,彩色为经过Spline smoothing(光滑样条法)平滑后的曲线。除蒸发、降水、径流和湖泊水位模拟的曲线外,由左至右,从上至下对应的指标曲线为:猪野泽下游青土湖剖面中的C/N和TOC [2];TraCE模拟的东亚夏季风指数 [38];65°N 6月太阳辐射 [39];青海湖的TOC和TN数据 [4];亚洲夏季风指数 [40];纳木错的TOC和TN数据 [31];色林错的δ 18O和δ 13C数据 [32];小柴达木湖DCD03 剖面的碎屑矿物(石英,绿泥石,白云石和长石)、碳酸盐含量和平均湿润指数 [19];罗布泊的Mg 2+/Ca 2+和碳酸盐含量 [18]
Fig.3 Comparison of simulated water cycle characteristics and paleoclimatic records over the Tibetan Plateau and its surrounding lakes during the Holocene The curves corresponding to evaporation, precipitation, runoff and lake level simulations in the six figures are the original data curves in gray and the curves smoothed by Spline smoothing in color. In addition to the curves for evaporation, precipitation, runoff, and lake level simulations, the index curves from left to right and from top to bottom are: TOC and C/N in the Qingtu Lake profile located downstream of Zhuyeze [2]; the East Asian summer monsoon index simulated by TraCE [38]; solar radiation in June at 65°N [39]; TOC and TN of Qinghai Lake [14]; Asian summer monsoon index [40]; TOC and TN of Namco [31]; δ 18O and δ 13C of Selinco [32]; detrital minerals (quartz, chlorite, dolomite and feldspar), carbonate contents, and mean wetness index of the DCD03 profile of Xiao Qaidam Lake [19]; Mg2+/Ca2+ and carbonate contents of Lop Nur [18]
[1] 梁诗晴, 罗传秀, 向荣, ARIFUL Islam, 魏海成, 苏翔, 万随, 杜恕环, 张兰兰, 杨艺萍, 黄云, 林刚. 全新世安达曼海周边区域火灾历史及其影响因素[J]. 地球科学进展, 2024, 39(6): 616-631.
[2] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[3] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[4] 况雪源, 韩跃超. 中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究[J]. 地球科学进展, 2021, 36(12): 1301-1312.
[5] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[6] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
[7] 吉琳, 庞奖励, 黄春长, 查小春, 周亚利, 刘涛, 王蕾彬. 汉江上游晏家棚段全新世古洪水研究 *[J]. 地球科学进展, 2015, 30(4): 487-494.
[8] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[9] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[10] 杨文光,郑洪波,王可,谢昕,陈国成,梅西. 南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10): 1012-1018.
[11] 曹光杰;王建. 长江三角洲全新世环境演变与人地关系研究综述[J]. 地球科学进展, 2005, 20(7): 757-764.
[12] 汪卫国;冯兆东;P.Khosbayar;T.Narantsetseg. 蒙古全新世气候变化研究进展[J]. 地球科学进展, 2005, 20(2): 240-247.
[13] 任美锷. 气候变化对全新世以来中国东部政治、经济和社会发展影响的初步研究[J]. 地球科学进展, 2004, 19(5): 695-698.
[14] 沈明洁,谢志仁,朱诚. 中国东部全新世以来海面波动特征探讨[J]. 地球科学进展, 2002, 17(6): 886-894.
[15] 洪业汤. 太阳变化驱动气候变化研究进展[J]. 地球科学进展, 2000, 15(4): 400-405.
阅读次数
全文


摘要