地球科学进展 ›› 2022, Vol. 37 ›› Issue (10): 1025 -1036. doi: 10.11867/j.issn.1001-8166.2022.049

综述与评述 上一篇    下一篇

青藏高原水汽输送过程及水汽源地研究方法综述
李虎 1 , 3( ), 潘小多 1 , 2( )   
  1. 1.中国科学院青藏高原研究所 青藏高原地球系统科学国家重点实验室 三极观测与大数据中心,北京 100101
    2.青海师范大学高原科学与可持续发展研究院,青海 西宁 810016
    3.中国科学院大学,北京 100049
  • 收稿日期:2022-06-09 修回日期:2022-07-18 出版日期:2022-10-10
  • 通讯作者: 潘小多 E-mail:lihu@itpcas.ac.cn;panxd@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金委基础科学中心项目“青藏高原地球系统”(41988101);中国科学院战略性先导科技专项(A类)“泛第三极环境变化与绿色丝绸之路建设”(XDA20060600)

An Overview of Research Methods on Water Vapor Transport and Sources in the Tibetan Plateau

Hu LI 1 , 3( ), Xiaoduo PAN 1 , 2( )   

  1. 1.Three-Pole Environment Observation and Big Data Research Center, State Key Laboratory of Tibetan Plateau Earth System Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
    3.University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-06-09 Revised:2022-07-18 Online:2022-10-10 Published:2022-10-18
  • Contact: Xiaoduo PAN E-mail:lihu@itpcas.ac.cn;panxd@itpcas.ac.cn
  • About author:LI Hu (1998-), male, Rizhao City, Shandong Province, Master student. Research area includes numerical simulation of moisture over the Tibetan Plateau. E-mail: lihu@itpcas.ac.cn
  • Supported by:
    Projected supported by the Basic Science Center for Tibetan Plateau Earth System(41988101);The Strategic Priority Research Program of Chinese Academy of Sciences Sub-project of the “Pan-Third Pole environmental change and Green Silk Road Construction”(XDA20060600)

青藏高原被誉为“亚洲水塔”,研究其水汽输送过程及水汽源地的水汽贡献率对于明晰高原的水汽收支情况有重要意义。首先介绍了现在常用的水汽输送过程及水汽源地的研究方法,并分析了这些方法的优缺点:欧拉方法可定性研究水汽输送特征;拉格朗日方法通过模拟气块运动轨迹,定量分析水汽来源及贡献;欧拉水汽标记法可以对水汽标记,追踪水汽输送过程;而同位素分析法则通过分析水体稳定同位素的变化研究水汽来源。其次重点对青藏高原及其周边地区的水汽来源及水汽输送过程的相关研究成果进行了梳理,分析了青藏高原的主要水汽通道及水汽输送特征。最后在此基础上对目前存在的问题进行了总结,对未来的研究方向进行了展望。

The Tibetan Plateau, known as the “Asian Water Tower”, is the source of many major rivers in Asia. Its energy and water cycle processes have important impacts on regional and global climate change. Understanding the water vapor transport process and the contribution of water vapor sources is crucial for clarifying the water vapor budget of the plateau. In this study, we analyze the advantages and disadvantages of the research methods used to study the transport and sources of water vapor on the Tibetan Plateau. The classical Euler method was used to study the qualitative features of water vapor transport by calculating the water vapor flux. In addition, Lagrangian trajectory models are essential tools for studying the quantitative characteristics of water vapor transport by simulating the trajectories of humid air parcels. Eulerian tracer methods can be run in parallel with climate models or a posteriori with reanalysis data to track the water vapor transport process. Physical water vapor tracers are powerful tools for studying the water vapor sources of precipitation by measuring stable water isotopes. This study primarily focused on reviewing relevant research on water vapor transport and sources over the Tibetan Plateau and adjacent areas. Based on these studies, the main water vapor channels and characteristics of water vapor transport over the Tibetan Plateau were summarized. The review concluded with a summary of the challenges of current research and a forecast of future research directions.

中图分类号: 

1 YAO Tandong, CHEN Fahu, CUI Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931.
2 CHEN F H, DING L, PIAO S L, et al. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era[J]. Science Bulletin, 2021, 66(13): 1 263-1 266.
3 LI X, CHE T, LI X W, et al. CASEarth poles: big data for the three poles[J]. Bulletin of the American Meteorological Society, 2020, 101(9): E1475-E1491.
4 QIU J. China: the Third Pole[J]. Nature, 2008, 454(7 203): 393-396.
5 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
6 WU Guoxiong, MAO Jiangyu, DUAN Anmin, et al. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540.
吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 2004, 62(5): 528-540.
7 YAO Tandong, ZHU Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006, 21(5): 459-464.
姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
8 YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
9 GAO Y H, CUO L, ZHANG Y X. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J]. Journal of Climate, 2014, 27(5): 1 876-1 893.
10 XU Y, GAO Y H. Quantification of evaporative sources of precipitation and its changes in the southeastern Tibetan Plateau and middle Yangtze River Basin[J]. Atmosphere, 2019, 10(8): 428.
11 XU X D, LU C G, SHI X H, et al. World water tower: an atmospheric perspective[J]. Geophysical Research Letters, 2008, 35(20): L20815.
[1] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[2] 曾礼, 高艳红, 蒋盈沙, 刘朝阳, 李锁锁. 地形因子对华东地区降水影响的尺度效应研究[J]. 地球科学进展, 2022, 37(5): 535-548.
[3] 魏思华, 田军. 晚中新世低大气 pCO2 背景下暖室气候的成因机制[J]. 地球科学进展, 2022, 37(4): 417-428.
[4] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[5] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[6] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[7] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[8] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[9] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[10] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[11] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[12] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[13] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[14] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[15] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
阅读次数
全文


摘要