地球科学进展 ›› 2022, Vol. 37 ›› Issue (10): 1005 -1024. doi: 10.11867/j.issn.1001-8166.2022.050

综述与评述 上一篇    下一篇

生物炭对盐渍化土壤改良的研究进展
刘强 1( ), 袁延飞 1, 刘一帆 1, 石美 1, 王潇 1, 罗先香 1, 李霄云 2, 郑浩 1( ), 李锋民 1   
  1. 1.中国海洋大学 近海环境污染控制研究所 海洋环境与生态教育部重点实验室, 山东 青岛 266100
    2.陕西师范大学 地理科学与旅游学院, 陕西 西安 710119
  • 收稿日期:2022-04-11 修回日期:2022-06-15 出版日期:2022-10-10
  • 通讯作者: 郑浩 E-mail:liuqiang906@163.com;zhenghao2013@ouc.edu.cn
  • 基金资助:
    山东省自然科学基金杰出青年基金项目“土壤环境地球化学”(ZR2021JQ13);山东省重点研发计划(重大科技创新工程)“盐渍土快速改良与地力培肥的功能炭基产品的研发与应用”(2018CXGC0304)

Research Progress: the Application of Biochar in the Remediation of Salt-affected Soils

Qiang LIU 1( ), Yanfei YUAN 1, Yifan LIU 1, Mei SHI 1, Xiao WANG 1, Xianxiang LUO 1, Xiaoyun LI 2, Hao ZHENG 1( ), Fengmin LI 1   

  1. 1.Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
    2.School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
  • Received:2022-04-11 Revised:2022-06-15 Online:2022-10-10 Published:2022-10-18
  • Contact: Hao ZHENG E-mail:liuqiang906@163.com;zhenghao2013@ouc.edu.cn
  • About author:LIU Qiang (1996-), male, Jining City, Shandong Province, Ph.D student. Research area includes restoration of degraded soil in coastal wetlands. E-mail: liuqiang906@163.com
  • Supported by:
    the Shandong Province Natural Science Foundation for Distinguished Young Scholars “Soil environmental geochemistry”(ZR2021JQ13);The Shandong Key Research and Development Program-Science and Technology Innovation Project “Development and application of functional carbon-based products for rapid improvement and fertility enhancement of salt-affected soil”(2018CXGC0304)

盐渍土的绿色改良和利用是培育健康土壤、保障全球粮食安全和缓解气候变化的重要保障。具有固碳、污染物控制和生态修复等多功能的环境友好型材料生物炭在土壤改良方面潜力巨大。近年来,生物炭对盐渍土改良的研究也备受关注。然而,生物炭对盐渍土的改良效果表现出极大的复杂性和不确定性,不同研究得出的结论差异较大,关键机制缺乏系统的总结。这极大地限制了生物炭技术在盐渍化土壤改良中的应用以及生物炭产业化的发展。基于此,综合分析了生物炭对盐渍化土壤物理、化学和生物学性质的影响,重点阐述了生物炭特性与盐渍土改良效果之间的联系和关键机制,最后指出了目前研究存在的不足和需要加强的方面,尤其强调了从土壤健康角度综合评估生物炭改良盐渍土效果的重要性和紧迫性,以期为生物炭的应用推广提供理论依据,为盐渍土壤的绿色开发提供技术保障。

The remediation and utilization of salt-affected soil through the application of green and sustainable technologies are important for cultivating healthy soil, ensuring global food security, and mitigating global climate change. Biochar has the potential to improve soil health and increase crop yield because of its multiple advantages, such as excellent pore structure, abundant surface functional groups, and high carbon stability. Recent research focusing on the improvement of salt-affected soils via biochar application has garnered increasing interest. However, the effect of biochar on salt-affected soil is extremely complex and diverse, resulting in a lack of critical mechanisms responsible for biochar performance in salt-affected soils. This greatly limits the application of biochar technology for the improvement of salt-affected soils and the industrialization of biochar. Therefore, this review comprehensively analyzed the impact of biochar on the physical, chemical, and biological properties of salt-affected soils. Specific focus areas included the relationship and critical mechanism between biochar properties and salt-affected soils and the deficiencies in areas that need to be strengthened. We emphasize the importance and urgency of comprehensively evaluating the effects of biochar application in the remediation of salt-affected soils from the perspective of soil health. In this study, we aimed to provide a theoretical basis for the application and popularization of biochar, as well as technical assurance for the green development of salt-affected soils.

中图分类号: 

图1 生物炭的制备以及在土壤改良和污染修复方面的应用
Fig. 1 Preparation of biochar and its application in soil improvement and remediation
图2 生物炭对盐渍土壤团聚体和水分特征的影响机制
Fig. 2 The potential mechanisms underlying the effects of biochar on aggregates and water properties in salt-affected soils
图3 生物炭对盐渍土壤有机碳矿化的正激发和负激发效应及可能机制
Fig. 3 Effects of biochar on positive and negative priming effects of SOC mineralization in salt-affected soils and the potential mechanisms
图4 生物炭对盐渍土壤NP的生物地球化学循环过程的影响
Fig. 4 Effect of biochar on the biogeochemical cycle of N and P in salt-affected soils
图5 生物炭对盐渍土壤生物学性质的影响及可能机制
Fig. 5 Effects of biochar on the biological properties of salt-affected soils and the potential mechanisms
图6 生物炭特性与盐渍化土壤改良的效应关系及生物炭技术的发展方向
Fig. 6 The relationships between biochar properties and improvement effects of salt-affected soil and the future direction of biochar technology
141 BI Yucui, CAI Siyuan, WANG Yu, et al. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: views from crop production, carbon sequestration and net ecosystem economic benefits[J]. Journal of Environmental Management, 2019, 245: 173-186.
142 JOSEPH S, POW D, DAWSON K, et al. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation[J]. Science of the Total Environment, 2020, 724: 138153.
143 MOHAMMADI A, KHOSHNEVISAN B, VENKATESH G, et al. A critical review on advancement and challenges of biochar application in Paddy fields: environmental and life cycle cost analysis[J]. Processes, 2020, 8(10): 1275.
144 DICKINSON D, BALDUCCIO L, BUYSSE J, et al. Cost‐benefit analysis of using biochar to improve cereals agriculture[J]. Global Change Biology Bioenergy, 2015, 7(4): 850-864.
145 ALHASHIMI H A, AKTAS C B. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis[J]. Resources, Conservation and Recycling, 2017, 118: 13-26.
146 ROBERTS K G, GLOY B A, JOSEPH S, et al. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential[J]. Environmental science and technology, 2010, 44(2): 827-833.
147 LEFEBVRE D, WILLIAMS A, KIRK G J D, et al. An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a greenhouse gas removal technology[J]. Journal of Cleaner Production, 2021, 312: 127764.
148 ABBAS A, YASEEN M, KHALID M, et al. Effect of biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat (Triticum Aestivum L.) under field condition[J]. Journal of Plant Nutrition, 2017, 40(16): 2 303-2 311.
149 JIRKA S, TOMLINSON T. State of the Biochar Industry 2014[R]. International Biochar Initiative, 2015: 14-51.
150 YANG Qiushuang, MAŠEK O, ZHAO Ling, et al. Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation[J]. Applied Energy, 2021, 282: 116275.
1 HENRY R C, ARNETH A, JUNG M, et al. Global and regional health and food security under strict conservation scenarios[J]. Nature Sustainability, 2022,5(4): 303-310.
2 LEHMANN J, BOSSIO D A, KÖGEL-KNABNER I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth and Environment, 2020, 1(10): 544-553.
3 COBAN O, de DEYN G B, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6 584): abe0725.
4 YANG Jinsong, YAO Rongjiang, WANG Xiangping, et al. Research on salt-affected soils in China: history, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27.
杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27.
5 LI Jianguo, PU Lijie, ZHU Ming, et al. The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica, 2012, 67(9): 1 233-1 245.
李建国, 濮励杰, 朱明, 等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012, 67(9): 1 233-1 245.
6 HASSANI A, AZAPAGIC A, SHOKRI N. Global predictions of primary soil salinization under changing climate in the 21st century[J]. Nature Communications, 2021, 12(1): 6663.
7 VINEIS P, KHAN A. Climate change-induced salinity threatens health[J]. Science, 2012, 338(6 110): 1 028-1 029.
8 DALIAKOPOULOS I N, TSANIS I K, KOUTROULIS A, et al. The threat of soil salinity: a European scale review[J]. Science of the Total Environment, 2016, 573: 727-739.
9 LI Jianguo, PU Lijie, HAN Mingfang, et al. Soil salinization research in China: advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960.
10 LITALIEN A, ZEEB B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. The Science of the Total Environment, 2020, 698: 134235.
11 LI Bin, WANG Zhichun, SUN Zhigao, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 154-158.
李彬, 王志春, 孙志高, 等.中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158.
12 LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. New York: Routledge, 2015: 1.
13 ZHENG Hao, WANG Xiao, LUO Xianxiang, et al. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation[J]. Science of the Total Environment, 2018, 610/611: 951-960.
14 LEHMANN J, COWIE A, MASIELLO C A, et al. Biochar in climate change mitigation[J]. Nature Geoscience, 2021, 14(12): 883-892.
15 DAI Yanhui, ZHENG Hao, JIANG Zhixiang, et al. Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis[J]. Science of the Total Environment, 2020, 713: 136635.
16 AL-WABEL M I, HUSSAIN Q, USMAN A R A, et al. Impact of biochar properties on soil conditions and agricultural sustainability: a review[J]. Land Degradation and Development, 2018, 29(7): 2 124-2 161.
17 Saifullah, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: challenges and opportunities[J]. Science of the Total Environment, 2018, 625: 320-335.
18 HE Kang, HE Guo, WANG Congpeng, et al. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 2020, 155: 103674.
19 ZHANG Jinhong, WU Bo, WANG Guoliang, et al. Effects and evaluation of biochar on physical-chemical properties of coastal saline soil and alfalfa growth[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 285-294.
张进红, 吴波, 王国良, 等. 生物炭对盐渍土理化性质和紫花苜蓿生长的影响[J]. 农业机械学报, 2020, 51(8): 285-294.
20 MARZOOQI A F, YOUSEF L F. Biological response of a sandy soil treated with biochar derived from a halophyte (Salicornia Bigelovii) [J]. Applied Soil Ecology, 2017, 114: 9-15.
21 KAZEMI R, RONAGHI A, YASREBI J, et al. Effect of shrimp waste-derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(4): 758-770.
22 DUAN Manli, LIU Guohuan, ZHOU Beibei, et al. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil[J]. Journal of Soils and Sediments, 2021, 21(6): 2 192-2 202.
23 KIM H S, KIM K R, YANG J E, et al. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response[J]. Chemosphere, 2016, 142: 153-159.
24 CHAGANTI V N, CROHN D M, ŠIMŮNEK J. Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water[J]. Agricultural Water Management, 2015, 158: 255-265.
25 CHAGANTI V N, CROHN D M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water[J]. Geoderma, 2015, 259/260: 45-55.
26 ZHENG Hao, WANG Xiao, CHEN Lei, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation[J]. Plant Cell and Environment, 2018, 41: 517-532.
151 YU Kailing, LAU B F, SHOW P L, et al. Recent developments on algal biochar production and characterization[J]. Bioresource technology, 2017, 246: 2-11.
152 FENG Qianwei, WANG Bing, CHEN Miao, et al. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: a review[J]. Resources, Conservation and Recycling, 2021, 164: 105204.
153 KUNG Chihchun, MU Jianhong. Prospect of China’s renewable energy development from pyrolysis and biochar applications under climate change[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109343.
154 CHENG Jie, LIAO Zhou, HU Shengchun, et al. Synthesis of an environmentally friendly binding material using pyrolysis by-products and modified starch binder for slow-release fertilizers[J]. Science of the Total Environment, 2022, 819: 153146.
155 MASEK O, BUSS W, SOHI S. Standard biochar materials[J]. Environmental Science and Technology, 2018, 52(17): 9 543-9 544.
27 HAN Lanfang, SUN Ke, YANG Yan, et al. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020, 364: 114184.
28 SUN Xiaoqin, FANG Kai, FEI Yuanhang, et al. Structure and hydraulic characteristics of saline soil improved by applying biochar based on micro-CT scanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 242-249.
孙枭沁, 房凯, 费远航, 等. 施加生物质炭对盐渍土土壤结构和水力特性的影响[J]. 农业机械学报, 2019, 50(2): 242-249.
29 ZHANG Xu, Qu Jisong, Li Hong, et al. Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region[J]. Geoderma, 2020, 363: 114170.
30 ARTIOLA J F, RASMUSSEN C, FREITAS R. Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass[J]. Soil Science, 2012, 177(9): 561-570.
31 MAHMOUD E K, EL-BESHBESHY T R, EL-KADER N E ABD, et al. Bio char impacts on physical properties and wheat yield of salt affected soils[J]. International Journal of Research and Science Publication, 2017, 2(1): 1-10.
32 AGBNA H D, ALI G, ALBASHIR E, et al. Effect of biochar on some soil properties and tomato growth under saline water conditions[J]. International Journal of Scientific and Engineering Research, 2017, 8(4): 2 229-5 518.
33 LIU Guocheng, ZHENG Hao, JIANG Zhixiang, et al. Formation and physicochemical characteristics of nano biochar: insight into chemical and colloidal stability[J]. Environmental Science and Technology, 2018, 52(18): 10 369-10 379.
34 WANG Liuwei, O’CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science and Technology, 2020, 54(23): 14 797-14 814.
35 de JESUS DUARTE S, GLASER B, PELLEGRINO C C. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils[J]. Agronomy, 2019, 9(4): 165.
36 GŁĄB T, PALMOWSKA J, ZALESKI T, et al. Effect of biochar application on soil hydrological properties and physical quality of sandy soil[J]. Geoderma, 2016, 281: 11-20.
37 EDEH I G, MAŠEK O, BUSS W. A meta-analysis on biochar’s effects on soil water properties-new insights and future research challenges[J]. The Science of the Total Environment, 2020, 714: 136857.
38 QIN Bei, WANG Yaqin, TANG Guangmu, et al. Effects of applying cotton stalk biochar to Xinjiang saline soil on the physical and chemical properties and crop yield[J]. Xinjiang Agricultural Sciences, 53(12): 2 290-2 298.
秦蓓, 王雅琴, 唐光木, 等.施用棉秆炭对新疆盐渍化土壤理化性质及作物产量的影响[J]. 新疆农业科学, 2016, 53(12): 2 290-2 298.
39 SUN Junna, HE Fuhong, ZHANG Zhenhua, et al. Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil[J]. Science of the Total Environment, 2016, 569/570: 390-394.
40 LASHARI M S, LIU Yuming, LI Lianqing, et al. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain[J]. Field Crops Research, 2013, 144: 113-118.
41 SUN Yunpeng, YANG Jinsong, YAO Rongjiang, et al. Effects of biochar and fulvic acid application on soil properties in tidal flat reclamation region[J]. Journal of Agricultural Science and Technology, 2019, 21(8): 115-121.
孙运朋, 杨劲松, 姚荣江, 等. 生物炭和黄腐酸对滨海滩涂盐碱地土壤性质的提升[J]. 中国农业科技导报, 2019, 21(8): 115-121.
42 YANG Fang, LI Xinqing, XING Ying, et al. Effect of biochar amendment on nitrogen leaching in saline soil [J]. Journal of Agro-Environment Science, 2014, 33(5): 972-977.
杨放, 李心清, 刑英, 等. 生物炭对盐碱土氮淋溶的影响[J]. 农业环境科学学报, 2014, 33(5): 972-977.
43 EL-MAGEED T A ABD, RADY M M, TAHA R S, et al. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress[J]. Scientia Horticulturae, 2020, 261: 108930.
44 XU Wenhuan, WANG Guobing, DENG Fangfang, et al. Responses of soil microbial biomass, diversity and metabolic activity to biochar applications in managed poplar plantations on reclaimed coastal saline soil[J]. Soil Use and Management, 2018, 34(4): 597-605.
45 DAS O, SARMAH A K. The love-hate relationship of pyrolysis biochar and water: a perspective[J]. Science of the Total Environment, 2015, 512/513: 682-685.
46 YANG Runya, ZHOU Cuixiang, ZHU Jinjin, et al. Effects of biochar application on phreatic water evaporation and water-salt distribution in coastal saline soil[J]. Journal of Plant Nutrition, 2019, 42(10):1 243-1 253.
47 SUN Junna, YANG Runya, LI Wenxue, et al. Effect of biochar amendment on water infiltration in a coastal saline soil[J]. Journal of Soils and Sediments, 2018, 18(11): 3 271-3 279.
48 ESMAEELNEJAD L, SHORAFA M, GORJI M, et al. Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study[J]. Communications in Soil Science and Plant Analysis, 2017, 48(14): 1 710-1 718.
49 LIU Zuolin, DUGAN B, MASIELLO C A, et al. Biochar particle size, shape, and porosity act together to influence soil water properties[J]. PLoS ONE, 2017, 12(6): e0179079.
50 OMONDI M O, XIA Xin, NAHAYO A, et al. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J]. Geoderma, 2016, 274: 28-34.
51 EL-NAGGAR A, LEE S S, RINKLEBE J, et al. Biochar application to low fertility soils: a review of current status, and future prospects[J]. Geoderma, 2019, 337: 536-554.
52 YUAN Jinhua, XU Renkou. Research progress of amelioration effects of biochars on acid soils[J]. Soils, 2012, 44(4): 541-547.
袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展[J]. 土壤, 2012, 44(4): 541-547.
53 SADEGH-ZADEH F, PARICHEHREH M, JALILI B, et al. Rehabilitation of calcareous saline-sodic soil by means of biochars and acidified biochars[J]. Land Degradation and Development, 2018, 29(10): 3 262-3 271.
54 HAN Jianhong, LI Yanwei, ZHANG Lianke, et al. Effect of biochar and FGD-gypsum application on soil basic physical and chemical properties and maize growth of saline soil[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5 291-5 297.
韩剑宏, 李艳伟, 张连科, 等. 生物炭和脱硫石膏对盐碱土壤基本理化性质及玉米生长的影响[J]. 环境工程学报, 2017, 11(9): 5 291-5 297.
55 ZHANG Rui, YANG Hao, ZHANG Furong, et al. Effects of bamboo biochar on coastal saline soils of Chongming Island, Shanghai[J]. Journal of Agro-Environment Science, 2014, 33(12): 2 404-2 411.
张瑞, 杨昊, 张芙蓉, 等. 生物竹炭改良崇明滩涂盐渍化土壤的试验研究[J]. 农业环境科学学报, 2014, 33(12): 2 404-2 411.
56 SHE Dongli, SUN Xiaoqin, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743.
57 LUO Xianxiang, WANG Zhengyang, MEKI K, et al. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth[J]. Journal of Soils and Sediments, 2019, 19(12): 3 934-3 944.
58 LUO Xianxiang, LIU Guocheng, XIA Yang, et al. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China[J]. Journal of Soils and Sediments, 2017, 17(3): 780-789.
59 LI Haixiao, LU Xueqiang, XU Yan, et al. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 2019, 352: 96-103.
60 SUN Junna, HE Fuhong, SHAO Hongbo, et al. Effects of biochar application on Suaeda salsa growth and saline soil properties[J]. Environmental Earth Sciences, 2016, 75(8): 630.
61 MANASA M R K, KATUKURI N R, DARVEEKARAN NAIR S S, et al. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil[J]. Journal of Environmental Management, 2020, 269: 110737.
62 XU Xiaoyun, ZHAO Yinghao, SIMA J K, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review[J]. Bioresource Technology, 2017, 241: 887-899.
63 ZHENG Hao, WANG Zhenyu, DENG Xia, et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures[J]. Bioresource Technology, 2013, 130: 463-471.
64 ZHANG Peng, BING Xue, JIAO Le, et al. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar[J]. Chemical Engineering Journal, 2022, 431: 133904.
65 SUN Junna, DONG Lukang, XU Gang, et al. Effects of furfural and its biochar additions on physical-chemical characteristics of a saline soil[J]. Journal of Agro-Environment Science, 2014, 33(3): 532-538.
孙军娜, 董陆康, 徐刚, 等. 糠醛渣及其生物炭对盐渍土理化性质影响的比较研究[J]. 农业环境科学学报, 2014, 33(3): 532-538.
66 SCHULZ H, DUNST G, GLASER B. Positive effects of composted biochar on plant growth and soil fertility[J]. Agronomy for Sustainable Development, 2013, 33(4): 817-827.
67 ZHENG Hao, WANG Ruirui, ZHANG Qian, et al. Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil[J]. Environment International, 2020, 145: 106158.
68 HE Lili, BI Yucui, ZHAO Jin, et al. Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils[J]. Science of the Total Environment, 2018, 619/620: 1 105-1 115.
69 Liang Biqing, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1 719-1 730.
70 LUO Xianxiang, WANG Leyun, LIU Guocheng, et al. Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China[J]. Ecological Engineering, 2016, 94: 329-336.
71 YADAV V, JAIN S, MISHRA P, et al. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar[J]. Applied Soil Ecology, 2019, 138: 144-155.
72 LEHMANN J, HANSEL C M, KAISER C, et al. Persistence of soil organic carbon caused by functional complexity[J]. Nature Geoscience, 2020, 13(8): 529-534.
73 WANG Fang, HARINDINTWALI J D, YUAN Zhizhang, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4): 100180.
74 ZHANG Qian, LIU Bingjie, YU Lu, et al. Effects of biochar amendment on carbon and nitrogen cycling in coastal saline soils: a review[J]. Journal of Natural Resources, 2019, 34(12): 2 529-2 543.
张倩, 刘冰洁, 余璐, 等. 生物炭对滨海湿地盐碱土壤碳氮循环的影响[J]. 自然资源学报, 2019, 34(12): 2 529-2 543.
75 LIN Xingwu, XIE Zubin, ZHENG Jiyong, et al. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil[J]. European Journal of Soil Science, 2015, 66(2): 329-338.
76 BHADURI D, SAHA A, DESAI D, et al. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study[J]. Chemosphere, 2016, 148: 86-98.
77 LU Weiwei, DING Weixin, ZHANG Junhua, et al. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect[J]. Soil Biology and Biochemistry, 2014, 76: 12-21.
78 YU Zhuyun, LING Lu, SINGH B P, et al. Gain in carbon: deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils[J]. The Science of the Total Environment, 2020, 746: 141057.
79 LIANG Chao, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 17105.
80 LIANG Chao, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11): 3 578-3 590.
81 ZHANG Yulan, XIE Hongtu, WANG Fuping, et al. Effects of biochar incorporation on soil viable and necromass carbon in the luvisol soil[J]. Soil Use and Management, 2022, 38(1): 318-330.
82 DISSANAYAKE P D, YOU S M, IGALAVITHANA A D, et al. Biochar-based adsorbents for carbon dioxide capture: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109582.
83 SINGH B P, COWIE A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil[J]. Scientific Reports, 2014, 4: 3687.
84 LUO Xianxiang, CHEN Lei, ZHENG Hao, et al. Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China[J]. Geoderma, 2016, 282: 120-128.
85 PAUSTIAN K, LEHMANN J, OGLE S, et al. Climate-smart soils[J]. Nature, 2016, 532(7 597): 49-57.
86 WU Lipeng, WEI Changbin, ZHANG Shirong, et al. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil[J]. Journal of Cleaner Production, 2019, 235: 901-909.
87 KARIM A A, KUMAR M, SINGH E, et al. Enrichment of primary macronutrients in biochar for sustainable agriculture: a review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1 449-1 490.
88 LIU Liyun, TAN Zhongxin, GONG Huabo, et al. Migration and transformation mechanisms of nutrient elements (N, P, K) within biochar in straw-biochar-soil-plant systems: a review[J]. ACS Sustainable Chemistry and Engineering, 2018, 7(1): 22-32.
89 XU Gang, ZHANG You, WU Yu, et al. Effects of biochar application on nitrogen and phosphorus availability in soils: a review[J]. Scientia Sinica Vitae, 2016, 46(9): 1 085-1 090.
徐刚, 张友, 武玉, 等. 生物炭对土壤中氮磷有效性影响的研究进展[J]. 中国科学:生命科学, 2016, 46(9): 1 085-1 090.
90 PROMMER J, WANEK W, HOFHANSL F, et al. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial[J]. PLoS ONE, 2014, 9(1): e86388.
91 SHI Yulong, LIU Xingren, GAO Peiling, et al. Effects of biochar and organic fertilizer on saline-alkali soil N2O emission in the North China Plain[J]. Environmental Science, 2017, 38(12): 5 333-5 343.
石玉龙, 刘杏认, 高佩玲, 等. 生物炭和有机肥对华北农田盐碱土N2O排放的影响[J]. 环境科学, 2017, 38(12):5 333-5 343.
92 LIU Shimeng, LI Yawei, XU Junzeng, et al. Biochar partially offset the increased ammonia volatilization from salt-affected soil[J]. Archives of Agronomy and Soil Science, 2021, 67(9): 1 202-1 216.
93 LIU Sainan, MENG Jun, JIANG Linlin, et al. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types[J]. Applied Soil Ecology, 2017, 116: 12-22.
94 RATH K M, MAHESHWARI A, ROUSK J. The impact of salinity on the microbial response to drying and rewetting in soil[J]. Soil Biology and Biochemistry, 2017, 108: 17-26.
95 MAESTRE F T, DELGADO-BAQUERIZO M, JEFFRIES T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15 684-15 689.
96 SARAVANAKUMAR K, KATHIRESAN K, MUBARAKALI D, et al. Soil-microbial communities indexing from mangroves rhizosphere and barren sandy habitats[J]. Physiological and Molecular Plant Pathology, 2018, 104: 58-68.
97 RATH K M, MURPHY D N, ROUSK J. The microbial community size, structure, and process rates along natural gradients of soil salinity[J]. Soil Biology and Biochemistry, 2019,138: 107607.
98 ZHU Xiaomin, CHEN Baoliang, ZHU, Lizhong, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review[J]. Environmental Pollution, 2017, 227: 98-115.
99 RASUL M, CHO J, SHIN H S, et al. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: a review[J]. The Science of the Total Environment, 2022, 805: 150304.
100 JI Mengyuan, WANG Xiaoxia, USMAN M, et al. Effects of different feedstocks-based biochar on soil remediation: a review[J]. Environmental Pollution, 2022, 294: 118655.
101 SHI Yulong, GAO Peiling, LIU Xingren, et al. Increased microbial biomass in coastal saline fields of North China Plain by application of biochar and organic manure[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 555-567.
石玉龙, 高佩玲, 刘杏认, 等. 生物炭和有机肥施用提高了华北平原滨海盐土微生物量[J]. 植物营养与肥料学报, 2019, 25(4): 555-567.
102 NGUYEN B T, TRINH N N, BACH Q V. Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition[J]. Applied Soil Ecology, 2020, 152: 103531.
103 GUJRE N, SONI A, RANGAN L, et al. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review[J]. Environmental Pollution, 2020, 268, 115549.
104 JONES D L, ROUSK J, EDWARDS-JONES G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 2012, 45: 113-124.
105 MOSTAFA F, SHABAN K. Effect of different types of biochar on soil chemical properties, microbial community, pathogenic fungi and Faba bean productivity[J]. Scientific Journal of Agricultural Sciences, 2019, 1(2): 72-86.
106 MALIK Z, SHAH Z, TARIQ M. Biochar improves viability of Arbuscular Mycorrhizal Fungi (AMF) in soil and roots of wheat (Triticum aestivum) and maize (Zea mays L.) under various cropping systems[J]. Sarhad Journal of Agriculture, 2019, 35(3): 834-846.
107 WEI Xiaomeng, GE Tida, WU Chuanfa, et al. T4-like phages reveal the potential role of viruses in soil organic matter mineralization[J]. Environmental Science and Technology, 2021, 55(9): 6 440-6 448.
108 SASIDHARAN S, TORKZABAN S, BRADFORD S A, et al. Transport and retention of bacteria and viruses in biochar-amended sand[J]. Science of the Total Environment, 2016, 548/549: 100-109.
109 LI Shaopeng, CHEN Peizhen, ZHOU Yiyi, et al. Effects of biochar application on available nutrients and enzyme activities in coastal saline-alkali soil[J]. Journal of Southern Agriculture, 2019, 50(7): 1 460-1 465.
李少朋, 陈昢圳, 周艺艺, 等. 生物炭施用对滨海盐碱土速效养分和酶活性的影响[J]. 南方农业学报, 2019, 50(7): 1 460-1 465.
110 SONG Dali, XI Xiangyin, ZHENG Qin, et al. Soil nutrient and microbial activity responses to two years after maize straw biochar application in a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2019, 180: 348-356.
111 GODLEWSKA P, OK Y S, OLESZCZUK P. The dark side of black gold: ecotoxicological aspects of biochar and biochar-amended soils[J]. Journal of Hazardous Materials, 2021, 403: 123833.
112 Masiello C A, Chen Ye, Gao Xiaodong, et al. Biochar and microbial signaling: production conditions determine effects on microbial communication[J]. Environmental Science and Technology, 2013, 47(20): 11 496-11 503.
113 LIAO Hongkai, ZHENG Chunli, LONG Jian, et al. Effects of biochar amendment on tomato rhizosphere bacterial communities and their utilization of plant-derived carbon in a calcareous soil[J]. Geoderma, 2021, 396: 115082.
114 OLIVERIO A M, GEISEN S, DELGADO-BAQUERIZO M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 2020, 6(4): eaax8787.
115 SUN Xin, LI Qi, YAO Haifeng, et al. Soil fauna and soil health[J]. Acta Pedologica Sinica,2021,58(5): 1 073-1 083.
孙新, 李琪, 姚海凤, 等. 土壤动物与土壤健康[J]. 土壤学报, 2021, 58(5): 1 073-1 083.
116 NUNES M R, VEUM K S, PARKER P A, et al. The soil health assessment protocol and evaluation applied to soil organic carbon[J]. Soil Science Society of America Journal, 2021, 85(4): 1 196-1 213.
117 MARKS E A N, MATTANA S, ALCAÑIZ J M, et al. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial[J]. Agriculture, Ecosystems and Environment, 2016, 215: 30-39.
118 MARKS E A N, MATTANA S, ALCAÑIZ J M, et al. Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays[J]. European Journal of Soil Biology, 2014, 60: 104-111.
119 DOMENE X, MATTANA S, SÁNCHEZ-MORENO S. Biochar addition rate determines contrasting shifts in soil nematode trophic groups in outdoor mesocosms: an appraisal of underlying mechanisms[J]. Applied Soil Ecology, 2021, 158: 103788.
120 KUOPPAMÄKI K, SETÄLÄ H, HAGNER M. Nutrient dynamics and development of soil fauna in vegetated roofs with the focus on biochar amendment[J]. Nature-Based Solutions, 2021, 1: 100001.
121 ELMER W H, LATTAO C V, PIGNATELLO J J. Active removal of biochar by earthworms (Lumbricus terrestris)[J]. Pedobiologia, 2015, 58(1): 1-6.
122 ASILOGLU R, SAMUEL S O, SEVILIR B, et al. Biochar affects taxonomic and functional community composition of protists[J]. Biology and Fertility of Soils, 2021, 57(1): 15-29.
123 NOYCE G L, WINSBOROUGH C, FULTHORPE R, et al. The microbiomes and metagenomes of forest biochars[J]. Scientific Reports, 2016, 6(1): 26425.
124 DAI Zhongmin, XIONG Xinquan, ZHU Hang, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3(3): 239-254.
125 LIEKE T, ZHANG Xuchao, STEINBERG C E W, et al. Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans[J]. Environmental Science and Technology, 2018, 52(14): 7 981-7 987.
126 RAN Cheng, SHAO Xiwen, ZHU Jing, et al. Amending soda saline-alkali paddy soil with biochar improves soil nutrients and rice yield[J]. Journal of Irrigation and Drainage, 2019, 38(5): 46-51.
冉成, 邵玺文, 朱晶, 等. 生物炭对苏打盐碱稻田土壤养分及产量的影响[J]. 灌溉排水学报, 2019, 38(5): 46-51.
127 ZHANG Furong, ZHAO Lina, ZHANG Rui, et al. Effects of biochar on saline soil improvement and melon growth[J]. Acta Agriculturae Shanghai, 2015, 31(1): 54-58.
张芙蓉, 赵丽娜, 张瑞, 等. 生物炭对盐渍化土壤改良及甜瓜生长的影响[J]. 上海农业学报, 2015, 31(1): 54-58.
128 ZHANG Jining, ZHOU Sheng, SUN Huifeng, et al. Three-year rice grain yield responses to coastal mudflat soil properties amended with straw biochar[J]. Journal of Environmental Management, 2019, 239: 23-29.
129 RAN Cheng, GULAQA A, ZHU Jing, et al. Benefits of biochar for improving ion contents, cell membrane permeability, leaf water status and yield of rice under saline-sodic paddy field condition[J]. Journal of Plant Growth Regulation, 2020, 39(1): 370-377.
130 TORABIAN S, FARHANGI-ABRIZ S, RATHJEN J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress[J]. Plant Physiology and Biochemistry, 2018, 129: 141-149.
131 ABDEL LATEF A A H, SRIVASTAVA A K, EL-SADEK M S A, et al. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions[J]. Land Degradation and Development, 2018, 29(4): 1 065-1 073.
132 GHASSEMI-GOLEZANI K, FARHANGI-ABRIZ S. Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress[J]. Rhizosphere, 2021, 19: 100416.
133 QIN Yuan, DRUZHININA I S, PAN Xueyu, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7): 1 245-1 259.
134 RATH K M, MAHESHWARI A, ROUSK J. Linking microbial community structure to trait distributions and functions using salinity as an environmental filter[J]. mBio, 2019, 10(4): e01607-19.
135 ZHANG Xuwang, BAO Dongli, LI Maoting, et al. Bioremediation of petroleum hydrocarbons by alkali-salt‐tolerant microbial consortia and their community profiles[J]. Journal of Chemical Technology and Biotechnology, 2021, 96(3): 809-817.
136 SAFFARI N, HAJABBASI M A, SHIRANI H, et al. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability[J]. Journal of Environmental Management, 2020, 261: 110190.
137 THOUMAZEAU A, BESSOU C, RENEVIER M S, et al. Biofunctool®: a new framework to assess the impact of land management on soil quality. Part A: concept and validation of the set of indicators[J]. Ecological Indicators, 2019, 97: 100-110.
138 DEBELJAK M, TRAJANOV A, KUZMANOVSKI V, et al. A field-scale decision support system for assessment and management of soil functions[J]. Frontiers in Environmental Science, 2019, 7: 115.
139 BERA T, COLLINS H P, ALVA A K, et al. Biochar and manure effluent effects on soil biochemical properties under corn production[J]. Applied Soil Ecology, 2016, 107: 360-367.
140 OLADELE S O. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice-maize cropping sequence[J]. Geoderma, 2019, 353: 359-371.
[1] 张彧行, 翁白莎, 严登华. 基于文献可视化分析的土壤团聚体研究进展[J]. 地球科学进展, 2022, 37(4): 429-438.
[2] 武玉, 徐刚, 吕迎春, 邵宏波. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79.
[3] 韦朝阳,陈同斌. 重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6): 833-839.
阅读次数
全文


摘要