地球科学进展 ›› 2002, Vol. 17 ›› Issue (6): 833 -839. doi: 10.11867/j.issn.1001-8166.2002.06.0833

综述与评述 上一篇    下一篇

重金属污染植物修复技术的研究与应用现状
韦朝阳,陈同斌   
  1. 中国科学院地理科学与资源研究所环境修复室,北京 100101
  • 收稿日期:2001-09-26 修回日期:2002-06-10 出版日期:2002-12-20
  • 通讯作者: 韦朝阳(1965-),男,安徽铜陵人,副研究员,主要从事超富集植物及污染土壤的植物修复技术研究.E-mail: weicy@igsnrr.ac.cn E-mail:weicy@igsnrr.ac.cn
  • 基金资助:

    国家高技术发展计划项目“重金属污染土壤的植物修复技术”(编号:2001AA640501);国家自然科学基金项目“利用植物修复砷污染土壤的土壤环境化学和生态学机理”(编号:49941003);“砷污染土地的植物修复过程与机理”(编号:40071075);中国科学院知识创新工程重要方向项目“农产品风险评价与污染土壤生物修复研究”(编号:KZCX2-401-02);国家基础研究发展规划项目“尾矿中砷的释放与砷污染土壤的治理”(编号:G1999011808)资助.

AN PVERVIEW ON THE STATUS OF RESEARCH AND APPLICATION OF HEAVY METAL PHYTORMEDIATION

WEI Chao-yang, CHEN Tong-bin   

  1. Department of Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2001-09-26 Revised:2002-06-10 Online:2002-12-20 Published:2002-12-01

利用植物修复污染土壤是当前国际学术界的热点研究领域。系统阐述了植物修复技术的概念与内容,对重金属污染植物修复技术研究与应用的现状、植物修复技术的优缺点进行了重点评述,介绍了国外开展的一些典型应用案例,并对这一领域的发展作了展望。

Phytoremediation—a technique using plants to remove contaminants from soils has become a topic in current research. The basic concept and contents of phytoremediation has been summarized with examples illustrated in this paper. Phytoremdiation can be subdivided into phytoextraction, phytostabilization, rhizofitration and phytovolotization. The technique are based on a series number of special plants which are tolerant to some toxic heavy metals or metalloids, and/or can accumulate these metals or metalloids in their above ground parts. Some kinds of such tolerant or accumulating plants have been intensively investigated and even applied in the field, in most cases with addition of chemical chelator such as EDTA to enhance phytoextraction effect, or chemical amendments such as lime, phosphor minerals, beringite, fly ash, sewage sludge and biosolids to enhance phytostabilization of toxic and hazardous elements. The authors also give a brief introduction of some case studies of phytoremediation on its effectiveness and economical advantage. 
The paper concluded that multi-channel approaches should be taken to make phytoremediation commercial and engineering available, including more deep studies on tolerance and accumulation mechanisms, field survey at more place to try to search for more tolerant and accumulating plants which may provide great values for the breakthrough of phytoremediation technique. Studies on phytoremdiation processes such as methods for enhancing biomass and accumulation capacity of plants as well as their ecological impact are also high desirable.

中图分类号: 

[1]Kong Lingshao, Chen Qinglang, Kong Fanzhi, et al. A primary study on the background values of some elements in the plants of Guangzhou[A]. In: Editorial Office of Environmental Sciences, ed. Background Values of Some Elements in Environment and its Investigation Methodology[C]. Beijing:Science Press, 1982.[孔令韶,陈清朗,孔繁志,等.广州市一些植物中某些元素背景值的初步研究[A].见:《环境科学》编辑部编.环境中若干元素的自然背景值及其研究法[C].北京:科学出版社,1982.]
[2]Coordinated Panel on Agro-Environmental Background Values. Background value studies on the hazardous elements in the major farm soils and crops in China[J]. Agro-environmental Protection,1986,2:1-11.[农业环境背景值协作组.我国十三省(市)主要农业土壤及粮食作物中有害元素环境背景值研究[J].农业环境保护,1986,2:1-11.]
[3]Wu Yanyu, Wang Xin,Ma Yueqiang, et al. The cross contamination of arsenic and its control in soils[J]. Agro-environment Protection,1994, 13(3):109-114,141.[吴燕玉,王新,马越强,等.土壤砷复合污染及其防治研究[J].农业环境保护,1994,13(3):109-114,141.]
[4]Yang Xuechun, Mu Shusen, Tang Shuyuan. Heavy metal contamination and its transportation in the purle soil[J]. Agro-environmental Protection,1992, 11(2):61-65.[杨学春,牟树森,唐书源.紫色土区重金属污染与迁移[J].农业环境保护,1992,11(2):61-65.]
[5]Alloway B J. Heavy Metals in Soils (2nd)[M].New York: Blackie Academic & Professional, London Glasgow, Weinheim, 1995.
[6]Chaney R L, Minnie M, Li Y M, et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology 1997, 8:279-284.
[7]USEPA. Introduction to Phytoremediation[R]. EPA/600/R-99/107, Washington D C,2000.
[8]Baker A J M, McGrath S P, Sidoli C M D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J].  Resources, Conservation and Recycling, 1994, 11: 41-49.
[9]Dushenkov V, Kumar P B A N, Harry M, et al. Rhizofiltration: The use of plants to remove heavy metals from aqueous stream[J]. Environmental Science and Technology, 1995, 29:1 239-1 245.
[10]Salt D E, Blaylock M, Kumar P B A N, et al. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants[J]. Bio/Technology,1995,13: 468-474.
[11]Smith R A H, Bradshaw A D. The use of metal tolerant plant populations for the reclamation of metalliferous wastes[J]. Journal of Applied Ecology,1979,16:595-612.
[12]Kumar N P B A, Dushenkov V, Motto H, et al. Phytoextraction: The use of plants to remove heavy metals from soils[J]. Environmental Science and Technology, 1995, 29:1 232-1 238.
[13]Meagher  R B. Phytoremediation of toxic elemental and organic pollutants[J]. Current, Opinion on Plant Biology, 2000, 3(2):153-162.
[14]Banuelos G S, Ajwa H A, Mackey B, et al. Evaluation of different plant species used for phytoremediaition of high soil selenium[J]. Journal of Environmental Quality,1997, 26(3):639-646.
[15]Zayed A M, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetlands plants I: Duckweed[J]. Journal of Environmental Quality, 1998, 27(3):715-721.
[16]Zhu Y L, Zayed A M, Qian J H, et al. Phytoremediation of trace elements by wetland plants II: Water hyacinth[J]. Journal of Environmental Quality, 1999, 28(1):339-344.
[17]Dushenkov V, Mikheev A,  Prokhnevsky A, et al. Phytoremediation of radio cesium-contaminated soil in the vicinity of Chernobyl, Ukraine[J]. Environmental Science and Technology,1999, 33:469-475.
[18]USEPA. Phytoremediation of Contaminated Soil and Water at Hazardous Waste Sites[M]. EPA/540/S-01/500,Washington D C,2001. 
[19]Baker A J M. Metal Tolerance[J]. New Phytologist,1987, 106:93-111.
[20]Xie Xuejin, Xu Banliang. Copper indicator plant Elsholtzia haichowensis Sun[J]. Acta Geologica Sinica, 1952/1953, 32(4):360-368.[谢学锦, 徐邦梁. 铜矿指示植物海州香薷[J].地质学报,1952/1953,32(4):360-368.]
[21]Tang S R, Wilke B M ,Huang C Y. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China[J]. Plant and Soil, 1999, 209:225-232.
[22]Baker A J M, Proctor J. The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles[J]. Plant System Evolution,1990, 173:91-108.
[23]Reeves R D, Baker Alan. Metal-accumulating plants[A]. In: Raskin I, Ensley B D, eds. Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment[C]. New York: John Wiley & Sons Inc,2000.
[24]Bradshaw A D, Chadwick  M J. The Restoration of Land[M]. Oxford: Blackwell Science Publications, 1980.
[25]Baker A J M. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery,1989, 1: 81-126.
[26]Baker A J M, McGrath S P, Reeves R D, et al. Metal Hyperaccumulator plants: A review of the ecology and physiology of a biological resources for phytoremediaiton of metal-polluted soils[A]. In: Terry N, ed. Phytoremediation of Contaminated Soil and Water[C]. New York: CRC Press, 2000.85-107. 
[27]Wei Chaoyang, Chen Tongbin. Hyperaccumulators and phytoremediation of heavy metal contaminated soils: A review of studies in China and abroad[J]. Acta Ecologica Sinica,2001, 21:1 196-1 203.[韦朝阳,陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报,2001, 21:1 196-1 203.]
[28]Wei Chaoyang, Chen Tongbin. The ecological and chemical characteristics of plants in areas of high arsenic levels[J]. Acta Phytoecologica Sinica, 2002,26(6):695-700 .[韦朝阳, 陈同斌. 高砷区植物的生态与化学特征[J]. 植物生态学报, 2002,26(6):695-700 .]
[29]Chen Tongbin, Wei Chaoyang, Huang Zechun, et al. Arsenic hyperaccumulators Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(3):207-210.[陈同斌, 韦朝阳, 黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报,2002, 47(3):207-210.]
[30]Ma L Q, Kenneth M K,Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6 820):579.
[31]Wei Chaoyang, Chen Tongbin, Huang Zechun, et al. Cretan Brake ([WT6BX]Pteris cretica L.): An arsenic-accumulating plant[J] Acta Ecologica Sinica, 2002, 22 (5) :776-778.[韦朝阳, 陈同斌, 黄泽春,等. 大叶井口边草——新发现的一种富集砷的植物[J]. 生态学报, 2002, 22 (5) :776-778.]
[32]Francesconi K, Visoottiviseth P, Sridokchan W, et al. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: A potential phytoremediator of arsenic-contaminated soils[J]. The Science of Total Environment,2002, 284:27-35.
[33]Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated soils[J]. Environmental Pollution, 2002, 118:453-461.
[34]Long Xinxian, Yang Xiaoe, Ye Zhengqian, et al. Differences of uptake and accumulation of zinc in four species of Sedum[J]. Acta Botanica Sinica, 2002, 44(2):152-157.[龙新宪,杨肖娥,叶正钱,等.四种景天属植物对锌吸收和累积差异的研究[J].植物学报,2002, 44(2):152-157.]
[35]Glass D Associations, Inc. US and International Markets for Phytoremediation, 1999-2000[Z]. Washington D C, 1999.
[36]Blaylock M J, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in India Mustard by soil application of chelating agents[J]. Environmental  Science and Technology, 1997,31:860-865.
[37]Jerald L S. Phytoremediaiton of metals using hybrid poplar trees[A]. In:Raskin I, Ensley B D, eds. Phytoremediaiton of Toxic Metals: Using Plants to Clean Up the Environment[C]. New York: John Wiley & Sons Inc, 2000.
[38]Onken B M, Adriano D C. Arsenic availability in soil with time under saturated and sub-saturated conditions[J].  Soil Science of American Journal, 1997,61:746-752.
[39]Onken B M, Hossnar L R. Determination of arsenic species in soil solution under flooded conditions[J]. Soil Science of American Journal, 1996, 60:1 385-1 392.
[40]Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian Mustard[J]. Plant Physiology, 2000, 122:1 171-1 177.
[41]Chen Tongbin, Fan Zhilian, Lei Mei, et al. Arsenic uptake by hyperaccumulator Peteris vittata L: Effect of phosphorus and its significance[J]. Chinese Science Bulletin, 2002,47(15):1 156-1 159.[陈同斌, 范稚莲, 雷梅,等.磷对砷超富集植物吸收砷的影响及其科学意义[J]. 科学通报. 2002,47(15):1 156-1 159.]
[42]Mench M, Vangronsveld J, Lepp N W, et al. Physico-chemcial aspects and efficiency of trace element immobilizaiton by soil amendments[A]. In: Vangronsveld J, Cuningham S, eds. Metal-contaminated Soils: In Situ Inactivation and Phytoremediation[C]. New York: Landes Biosciences, Springer, 2000.
[43]Cuningham S D, Berti W R. Phytoremediation and phytostabiliation: technical, economical and regulatory considerations of the soil-lead issue[A]. In: Terry N, Banuelos G, eds.  Phytoremediation of Contaminated Soil and Water[C]. New York: CRC Press, 2000.
[44]Myrna E W. Phytoremediation on the brink of commercialization[J]. Environmental Science and Technology, 1997, 31:182-186.
[45]Baker A J M, Reeves R D, Hajar A S. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C.Presl(Brassicaceae) [J].New Phytologist, 1994, 127:61-68.
[46]Shen Z G, Zhao F J, McGrath S P. Uptake and transport of zinc in the hyperaccumulator Thalspi caerulescens and the non-hyperaccmulator Thlaspi ochroleucum[J]. Plant, Cell and Environment, 1997, 20:898-906.
[47]Huang J W, Blaylock M J, Yoram K, et al. Phytoremediation of Uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulatin in plants[J]. Environmental Science and Technology, 1998, 32: 2 004-2 008.
[48]Anderson C W N, Brooks R R, Stewart R B, et al. Harvesting a crop of gold in plants[J]. Nature, 1998, 395:553-554.
[49]Lasat M M. Phytoextraction of toxic metals: A review of biological mechanisms[J]. Journal of Environmental Quality, 2002, 31:109-120.

[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[5] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[6] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[7] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[8] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[9] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[10] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[11] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[12] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[13] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[14] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[15] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
阅读次数
全文


摘要