地球科学进展 ›› 2022, Vol. 37 ›› Issue (10): 1037 -1048. doi: 10.11867/j.issn.1001-8166.2022.065

综述与评述 上一篇    下一篇

河岸缓冲区氮传输及移除机制研究进展
陈雨晴 1 , 2( ), 席海洋 1( ), 程文举 1 , 2, 赵欣悦 1 , 2   
  1. 1.中国科学院西北生态环境资源研究院 中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2022-04-26 修回日期:2022-08-01 出版日期:2022-10-10
  • 通讯作者: 席海洋 E-mail:chenyuqing@nieer.ac.cn;xihy@lzb.ac.cn
  • 基金资助:
    中国科学院“西部之光——西部交叉团队”重点实验室专项“内陆河流域水文生态过程研究团队”(xbzg-zdsys-202103);内蒙古自治区科技重大专项项目“巴丹吉林沙漠脆弱环境安全状况及其风险评估”(zdzx2018057)

Research Progress on the Mechanisms of Nitrogen Transfer and Removal in Riparian Buffer Zones

Yuqing CHEN 1 , 2( ), Haiyang XI 1( ), Wenju CHENG 1 , 2, Xinyue ZHAO 1 , 2   

  1. 1.Northwest Institute of Eco-Environment and Resources, Key Laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-04-26 Revised:2022-08-01 Online:2022-10-10 Published:2022-10-18
  • Contact: Haiyang XI E-mail:chenyuqing@nieer.ac.cn;xihy@lzb.ac.cn
  • About author:CHEN Yuqing (1997-), female, Zibo County, Shandong Province, Master student. Research areas include hydrological and water resources in arid areas. E-mail: chenyuqing@nieer.ac.cn
  • Supported by:
    the “Western Light”—Key Laboratory Cooperative Research Cross-Team Project of Chinese Academy of Sciences “Research team of hydroecological processes in inland river basins”(xbzg-zdsys-202103);The Major Science and Technology Project in Inner Mongolia Autonomous Region of China “The fragile environmental security situation and its risk assessment of the Badain Jaran Desert”(zdzx2018057)

作为连接陆域和水域的过渡带,河岸缓冲区在防治水体氮污染方面发挥着重要的生态价值。基于国内外研究成果,重点围绕河岸缓冲区氮迁移路径、移除方式及其比例以及河岸缓冲区不同因素的影响机制等核心问题进行了归纳总结。结果发现: 河岸缓冲区氮迁移过程包括地表径流、下渗以及河水—地下水相互传输4条路径,氮在河岸缓冲区运移过程中可以通过化学或物理机制消耗转化,消耗率可达到90%以上,河岸缓冲区对于防止水体污染发挥着重要作用; 反硝化作用和植物吸收对氮移除的贡献率分别为5.0%~82.0%和0.6%~59.4%,厌氧氨氧化过程是河岸缓冲区氮移除的重要途径; 通过适当增加河岸缓冲区宽度以及改善植被状况可以提高河岸缓冲区氮移除效率。河岸缓冲区氮移除研究框架已基本构建,但未来仍需从方法和多因素耦合关系等方面进一步深入分析和探究。

As transitional zones between terrestrial and aquatic environments, riparian buffer zones play an important ecological role in preventing and regulating nitrogen (N) pollution in water bodies. Based on domestic and international research results, core issues, such as the N migration path, N removal method, proportion of the riverbank buffer zone, and the influence mechanisms of various factors in the riverbank buffer zone, were summarized. The results were as follows: the N migration process of the riparian buffer zone involved four pathways, including surface water runoff, downpour, and river-groundwater mutual transport. N could be consumed and converted by chemical or physical mechanisms during its transport in the riparian buffer zone, and the consumption rate exceeded 90%. The riparian buffer zone played an important role in preventing water pollution. The contribution rates of denitrification and plant uptake to N removal were 5.0%~82.0% and 0.6%~59.4%, respectively. The anaerobic ammonia oxidation process was an important method for removing N from the riverbank buffer zone. The efficiency of N removal from riverbank buffer zones could be improved by increasing the width of the riverbank buffer zone and improving the vegetation cover. A research framework for the N removal from the riverbank buffer zone has been established; however, further in-depth analysis and exploration studies based on methods and multi-factor coupling relationships are still required in the future.

中图分类号: 

1 GUO M, CHEN X, BAI Z,et al. How China’s nitrogen footprint of food has changed from 1961 to 2010[J]. Environmental Research Letters,2017,12(10):104006.
2 LIU X J, ZHANG Y, HAN W X,et al. Enhanced nitrogen deposition over China[J]. Nature,2013,494(7 438):459-462.
3 GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451(7 176):293-296.
4 WU Yali, XU Hai, YANG Guijun,et al. Progress in nitrogen pollution research in Lake Taihu[J]. Journal of Lake Sciences,2014,26(1):19-28.
吴雅丽,许海,杨桂军,等. 太湖水体氮素污染状况研究进展[J]. 湖泊科学,2014,26(1):19-28.
5 ZHANG Jianchun, PENG Buzhuo. A study on riparian area and its ecological rehabilitation[J]. Geographical Research,2002,21(3):373-383.
张建春,彭补拙. 河岸带及其生态重建研究[J]. 地理研究,2002,21(3):373-383.
6 COLE L J, STOCKAN J, HELLIWELL R. Managing riparian buffer strips to optimise ecosystem services: a review[J]. Agriculture,Ecosystems & Environment,2020,296:106891.
7 GUO Erhui, FAN Zihao, ZHANG Ruixiang,et al. Research progresses on the response of vegetation and soil to hydrological changes in riparian ecosystems[J]. Acta Ecologica Sinica,2021,41(23):9 164-9 173.
郭二辉,樊子豪,张瑞香,等. 河岸带生态系统植被与土壤对水文变化的响应研究进展[J]. 生态学报,2021,41(23):9 164-9 173.
8 BAKER M E, WELLER D E, JORDAN T E. Effects of stream map resolution on measures of riparian buffer distribution and nutrient retention potential[J]. Landscape Ecology,2007,22(7):973-992.
9 MAYER P M, REYNOLDS S K, MCCUTCHEN M D,et al. Meta-analysis of nitrogen removal in riparian buffers[J]. Journal of Environmental Quality,2007,36(4):1 172-1 180.
10 ANDERSON T R, GROFFMAN P M, KAUSHAL S S,et al. Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape[J]. Journal of Environmental Quality,2014,43(2):732-744.
11 HAN J G, LI Z B, LI P,et al. Nitrogen and phosphorous concentrations in runoff from a purple soil in an agricultural watershed[J]. Agricultural Water Management,2010,97(5):757-762.
12 HUANG Mingxiang. Experimental study on nitrate nitrogen migration mechanism in riverside farmland under the combined action of surface water and groundwater[D]. Qingdao:Qingdao University of Technology,2018.
黄明翔. 地表水—地下水联合作用下傍河农田硝酸盐氮迁移机理实验研究[D].青岛:青岛理工大学,2018.
13 TURKELTAUB T, KURTZMAN D, DAHAN O. Real-time monitoring of nitrate transport in the deep vadose zone under a crop field—implications for groundwater protection[J]. Hydrology and Earth System Sciences,2016,20(8):3 099-3 108.
14 ZHOU J B, XI J G, CHEN Z J,et al. Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation: a soil column method[J]. Pedosphere,2006,16(2):245-252.
15 HU Yalu, MA Rui, SUN Ziyong,et al. Influencing factors of nitrate concentrations in river water and groundwater interaction zone—a case study in the middle reaches of Heihe River at Linze,northwestern China[J]. Safety and Environmental Engineering,2016,23(1):40-46.
胡雅璐,马瑞,孙自永,等. 河水和地下水相互作用带中硝酸盐浓度影响因素研究——以黑河中游临泽河段为例[J]. 安全与环境工程,2016,23(1):40-46.
16 ZESSNER M, SCHILLING C, GABRIEL O,et al. Nitrogen fluxes on catchment scale:the influence of hydrological aspects[J]. Water Science and Technology,2005,52(9):163-173.
17 LANSDOWN K, HEPPELL C M, TRIMMER M,et al. The interplay between transport and reaction rates as controls on nitrate attenuation in permeable,streambed sediments[J]. Journal of Geophysical Research—Biogeosciences,2015,120(6):1 093-1 109.
18 XIA Qiwen, LI Binghua, HE Jiangtao,et al. Nitrogen transformation of shallow groundwater in river area of ecological recharge of reclaimed water in Chaobai River[J]. Research of Environmental Sciences,2021,34(3):618-628.
夏绮文,李炳华,何江涛,等. 潮白河再生水生态补给河道区浅层地下水氮转化[J]. 环境科学研究,2021,34(3):618-628.
19 HUANG Junlin, ZHENG Mingxia, SU Jing,et al. Effects of Kuihe river infiltration on the concentration of ammonia nitrogen and nitrate nitrogen in groundwater of riparian zone[J]. Research of Environmental Sciences,2020,33(2):421-430.
黄俊霖,郑明霞,苏婧,等. 奎河河水入渗对河岸带地下水氨氮和硝酸盐氮浓度的影响[J]. 环境科学研究,2020,33(2):421-430.
20 YAN Yani, MA Teng, ZHANG Junwen,et al. Experiment on migration and transformation of nitrate under interaction of groundwater and surface water[J]. Earth Science,2017,42(5):783-792.
闫雅妮,马腾,张俊文,等. 地下水与地表水相互作用下硝态氮的迁移转化实验[J]. 地球科学,2017,42(5):783-792.
21 WENDLAND F, KUNKEL R, GRIMVALL A,et al. Model system for the management of nitrogen leaching at the scale of river basins and regions[J]. Water Science and Technology,2001,43(7):215-222.
22 MCPHILLIPS L E, GROFFMAN P M, GOODALE C L,et al. Hydrologic and biogeochemical drivers of riparian denitrification in an agricultural watershed[J]. Water,Air & Soil Pollution,2015,226(6):1-17.
23 KREILING R M, RICHARDSON W B, CAVANAUGH J C,et al. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake:the role of rooted aquatic vegetation[J]. Biogeochemistry,2011, 104(1/2/3): 309-324.
24 TANNER C C. Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters[J]. Wetlands Ecology and Management,2001,9(1):49-73.
25 BILLEN G, RAMARSON A, THIEU V,et al. Nitrate retention at the river-watershed interface:a new conceptual modeling approach[J]. Biogeochemistry,2018,139(1):31-51.
26 LI Y J, CHEN Z L, LOU H J,et al. Denitrification controls in urban riparian soils:implications for reducing urban nonpoint source nitrogen pollution[J]. Environmental Science and Pollution Research,2014,21(17): 10 174-10 185.
27 KREILING R M, RICHARDSON W B, BARTSCH L A,et al. Denitrification in the river network of a mixed land use watershed:unpacking the complexities[J]. Biogeochemistry,2019,143(3):327-346.
28 YAN L B, XIE C K, XU X,et al. The influence of revetment types on soil denitrification in the adjacent tidal urban riparian zones[J]. Journal of Hydrology,2019,574:398-407.
29 XIN Mingxiu, ZHAO Ying, ZHOU Jun,et al. The application of denitrifying bacteria in denitrification of wastewater [J]. Microbiology,2007,34(4):773-776.
辛明秀,赵颖,周军,等. 反硝化细菌在污水脱氮中的作用[J]. 微生物学通报,2007,34(4):773-776.
30 GAO Meiyun, LIU Xingguo, ZENG Xianlei,et al. Effects of organic carbon for denitrification and anaerobic ammonium oxidation in sediments of aquaculture pond[J]. Chinese Journal of Environmental Engineering,2018,12(1):49-56.
高美云,刘兴国,曾宪磊,等. 有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响[J]. 环境工程学报,2018,12(1):49-56.
31 AHN C, PERALTA R M. Soil properties are useful to examine denitrification function development in created mitigation wetlands[J]. Ecological Engineering,2012,49:130-136.
32 YU Deshuang, WEI Sijia, LI Jin,et al. Effect of temperature on simultaneous carbon and nitrogen removal by anaerobic ammonium oxidation and denitrification[J]. China Environmental Science,2016,36(5):1 384-1 391.
于德爽,魏思佳,李津,等. 温度对厌氧氨氧化与反硝化耦合脱氮除碳的影响[J]. 中国环境科学,2016,36(5):1 384-1 391.
33 CHEN D, YANG K, WANG H Y. Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor[J]. Desalination and Water Treatment,2016,57(8):3 482-3 488.
34 YE C, CHENG X L, ZHANG K R,et al. Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone[J]. Soil Biology and Biochemistry,2017,115:137-147.
35 TEIXEIRA C, MAGALHÃES C, BOAVENTURA R A R, et al. Potential rates and environmental controls of denitrification and nitrous oxide production in a temperate urbanized estuary[J]. Marine Environmental Research,2010,70(5):336-342.
36 ČUHEL J, ŠIMEK M. Proximal and distal control by pH of denitrification rate in a pasture soil[J]. Agriculture Ecosystems & Environment,2011,141(1/2):230-233.
37 XIONG Z Q, LI S C, YAO L,et al. Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands[J]. Ecological Engineering,2015,83:437-443.
38 LI Jiabing, ZHANG Dangyu, WU Chunshan,et al. Effects of pH on the key nitrogen transformation processes of the wetland sediment in the Min River estuary[J]. Journal of Soil and Water Conservation,2017,31(1):272-278.
李家兵,张党玉,吴春山,等. pH对闽江河口湿地沉积物氮素转化关键过程的影响[J]. 水土保持学报,2017,31(1):272-278.
39 de KLEIN J J M, OVERBEEK C C, JORGENSEN C J, et al. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments[J]. Wetlands, 2017, 37(5):975-983.
40 LOU Huanjie. The research of soil denitrification in Shanghai urban riparian zones[D]. Shanghai:East China Normal University,2013.
娄焕杰.上海城市河岸带土壤反硝化作用研究[D]. 上海:华东师范大学,2013.
41 DENG Huanguang, CHEN Zhenlou, ZHANG Ju,et al. Study on soil denitrification under different vegetations in typical urban riparian zone of Shanghai[J]. Resources and Environment in the Yangtze Basin,2014,23(11):1 588-1 594.
邓焕广,陈振楼,张菊,等. 上海市典型城市河岸带不同植被类型下土壤反硝化作用研究[J]. 长江流域资源与环境,2014,23(11):1 588-1 594.
42 CHEN Gangliang, LI Jianhua, YANG Changming. Characteristics of soil denitrifying enzyme activity in riparian zones with different land use types in Chongming Island,Shanghai of China[J]. Chinese Journal of Applied Ecology,2013,24(10):2 926-2 932.
陈刚亮,李建华,杨长明. 崇明岛不同土地利用类型河岸带土壤反硝化酶活性特征[J]. 应用生态学报,2013,24(10):2 926-2 932.
43 LIU W Z, XIONG Z Q, LIU H,et al. Catchment agriculture and local environment affecting the soil denitrification potential and nitrous oxide production of riparian zones in the Han River Basin,China[J]. Agriculture,Ecosystems & Environment,2016,216:147-154.
44 HAN L, HUANG W, YUAN X Y,et al. Denitrification potential and influencing factors of the riparian zone soils in different watersheds,Taihu Basin[J]. Water,Air & Soil Pollution,2017,228(3):1-12.
45 ZHOU Zhongyu, ZHANG Haikuo, LIANG Jiahui,et al. Soil denitrifying enzyme activity and its influencing factors in a bamboo forest riparian zone in the upper reaches of the Taihu Lake Basin,China[J]. Chinese Journal of Applied Ecology,2021,32(9):3 070-3 078.
周钟昱,张海阔,梁佳辉,等. 太湖流域上游竹林河岸带土壤反硝化酶活性及其影响因素[J]. 应用生态学报,2021,32(9):3 070-3 078.
46 WEI J B, FENG H, CHENG Q G,et al. Denitrification potential of riparian soils in relation to multiscale spatial environmental factors:a case study of a typical watershed,China[J]. Environmental Monitoring and Assessment,2017,189(2):85.
47 MENG Y Y, HE Z B, LIU B,et al. Soil salinity and moisture control the processes of soil nitrification and denitrification in a riparian wetlands in an extremely arid regions in northwestern China[J]. Water, 2020,12(10):2815.
48 YU H B, SONG Y H, XI B D, et al. Denitrification potential and its correlation to physico-chemical and biological characteristics of saline wetland soils in semi-arid regions[J]. Chemosphere,2012,89(11):1 339-1 346.
49 BERNAL S, SABATER F, BUTTURINI A,et al. Factors limiting denitrification in a Mediterranean riparian forest[J]. Soil Biology and Biochemistry,2007,39(10):2 685-2 688.
50 HALLIN S, HELLMAN M, CHOUDHURY M I,et al. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands[J]. Water Research,2015,85:377-383.
51 JIN Shuquan, ZHOU Jinbo, BAO Weihong,et al. Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes[J]. Environmental Science,2017,38(1):156-161.
金树权,周金波,包薇红,等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学,2017,38(1):156-161.
52 WANG Lisha, LI Xi, GAN Lei,et al. Study on the aquatic plant combination patterns for intercepting nitrogen and phosphorus in wetland of subtropical hilly region[J]. Ecology and Environmental Sciences,2017,26(9):1 577-1 583.
王丽莎,李希,甘蕾,等. 亚热带丘陵区湿地水生植物组合模式拦截氮磷的研究[J]. 生态环境学报,2017,26(9):1 577-1 583.
53 LI Linfeng, NIAN Yuegang, JIANG Gaoming. Contribution of macrophytes assimilation in constructed wetlands to nitrogen and phosphorous removal[J]. Research of Environmental Sciences,2009,22(3):337-342.
李林锋,年跃刚,蒋高明. 植物吸收在人工湿地脱氮除磷中的贡献[J]. 环境科学研究,2009,22(3):337-342.
54 WU H M, ZHANG J, WEI R,et al. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes[J]. Environmental Science and Pollution Research International,2013,20(1):443-451.
55 ZHANG Zhiyong, WANG Jianguo, YANG Linzhang,et al. Contribution of plant uptake to nitrogen and phosphorus removal of four simulated wastewater treatment systems[J]. Soils,2008,40(3):412-419.
张志勇,王建国,杨林章,等. 植物吸收对模拟污水净化系统去除氮、磷贡献的研究[J]. 土壤,2008,40(3):412-419.
56 YIN Wei, LI Peijun, QIU Qiaojun,et al. Contribution of macrophyte assimilation in constructed wetland to nitrogen and phosphorous removal[J]. Chinese Journal of Ecology,2006,25(2):218-221.
尹炜,李培军,裘巧俊,等. 植物吸收在人工湿地去除氮、磷中的贡献[J]. 生态学杂志,2006,25(2):218-221.
57 HEFTING M M, CLEMENT J C, BIENKOWSKI P,et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe[J]. Ecological Engineering,2005,24(5):465-482.
58 LEE J H. An overview of phytoremediation as a potentially promising technology for environmental pollution control[J]. Biotechnology and Bioprocess Engineering,2013,18(3):431-439.
59 ZHANG X Y, ZHA L N, JIANG P Y, et al. Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus[J]. Environmental Science and Pollution Research International,2019,26(23):23 696-23 706.
60 ZHANG T, YU L Z, MAN Y,et al. Effects of harvest intensity on the marketable organ yield, growth and reproduction of Non-Timber Forest Products (NTFPs):implication for conservation and sustainable utilization of NTFPs[J]. Forest Ecosystems,2021,8(1):1-10.
61 YU Xinhui, WU Xiaodong, GE Xuguang,et al. Effects of harvest intensity on Myriophyllum aquaticum growth and water purification[J]. Journal of Hydroecology,2022,43(1):95-102.
俞新慧,吴晓东,葛绪广,等. 收割强度对粉绿狐尾藻生长和水质的影响[J]. 水生态学杂志,2022,43(1):95-102.
62 MULDER A, van de GRAAFA A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. Fems Microbiology Ecology, 1995, 16(3): 177-183.
63 STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.
64 KUMWIMBA M N, LOTTI T, ŞENEL E,et al. Anammox-based processes:how far have we come and what work remains? a review by bibliometric analysis[J]. Chemosphere,2020,238:124627.
65 WANG Zicong, Hai XÜ, ZHAN Xu,et al. Temporal and spatial characteristics of nitrogen removal in ditches and ponds in Tianmuhu Lake Basin[J]. Research of Environmental Sciences,2022,35(4):979-988.
王子聪,许海,詹旭,等.天目湖流域沟塘湿地脱氮速率的时空差异[J].环境科学研究,2022,35(4):979-988.
66 BONAGLIA S, HYLÉN A A, RATTRAY J E,et al. The fate of fixed nitrogen in marine sediments with low organic loading:an in situ study[J]. Biogeosciences,2017,14(2):285-300.
67 CHEN Zhihao, QIN Yunbin, DING Bangjing,et al. Denitrification and anaerobic ammonium oxidation in soil nitrogen migration process in a farmland of Wanshandang lake[J]. Environmental Science,2020,41(1):412-419.
陈志浩,覃云斌,丁帮璟,等.宛山荡农田土壤氮迁移过程反硝化与厌氧氨氧化[J]. 环境科学,2020,41(1):412-419.
68 XI D, BAI R, ZHANG L M,et al. Contribution of anammox to nitrogen removal in two temperate forest soils[J]. Applied and Environmental Microbiology,2016,82(15):4 602-4 612.
69 WANG S Y, WANG W D, ZHAO S Y,et al. Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones[J]. Water Research,2019,162:139-150.
70 WANG Ningning, XUE Dongmei, WANG Yidong,et al. A review of anammox-denitrification coupling process in a natural ecosystem[J]. Research of Environmental Sciences,2018,31(4):616-627.
王宁宁,薛冬梅,王义东,等.自然生态系统中厌氧氨氧化和反硝化耦合反应研究进展[J]. 环境科学研究,2018,31(4):616-627.
71 WANG L M, HONG Y G, GU J D,et al. Influence of critical factors on nitrogen removal contribution by anammox and denitrification in an anammox-inoculated wastewater treatment system[J]. Journal of Water Process Engineering,2021,40:101868.
72 PHILLIPS J D. An evaluation of the factors determining the effectiveness of water quality buffer zones[J]. Journal of Hydrology,1989,107(1/2/3/4):133-145.
73 CAO X Y, SONG C L, XIAO J,et al. The optimal width and mechanism of riparian buffers for storm water nutrient removal in the Chinese eutrophic lake Chaohu watershed[J]. Water,2018,10(10):1489.
74 WANG Qiong, FAN Kangfei, FAN Zhiping,et al. Nitrogen pollutant removal by riparian buffer zone:a review[J]. Chinese Journal of Ecology,2020,39(2):665-677.
王琼,范康飞,范志平,等. 河岸缓冲带对氮污染物削减作用研究进展[J]. 生态学杂志,2020,39(2):665-677.
75 MCEACHRAN A R, DICKEY L C, REHMANN C R,et al. Improving the effectiveness of saturated riparian buffers for removing nitrate from subsurface drainage[J]. Journal of Environmental Quality,2020,49(6):1 624-1 632.
76 MENG Yiqi, WU Yongbo, ZHU Ying,et al. The study on removing nitrogen in runoff water by riparian buffer strips[J]. Wetland Science,2016,14(4):532-537.
孟亦奇,吴永波,朱颖,等. 利用河岸缓冲带去除径流水中氮的研究[J]. 湿地科学,2016,14(4):532-537.
77 ZHANG Hongling, LI Tianjiao, ZHAO Zhifang,et al. Effects of riparian vegetation buffers on the removal efficiency of suspended solids and nitrogen in Liaohe River protected area[J]. Chinese Journal of Ecology,2020,39(7):2 185-2 192.
张鸿龄,李天娇,赵志芳,等. 辽河河岸植被缓冲带构建及其对固体颗粒物和氮阻控能力[J]. 生态学杂志,2020,39(7):2 185-2 192.
78 ZHAO Jingwei, HU Bin. Interception of Non-point source N and P and suspended solid matter by riparian vegetation[J]. Bulletin of Soil and Water Conservation,2012,32(4):51-55.
赵警卫,胡彬. 河岸带植被对非点源氮、磷以及悬浮颗粒物的截留效应[J]. 水土保持通报,2012,32(4):51-55.
79 AGUIAR T R, Jr RASERA K, PARRON L M,et al. Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds:the impact of no-till crops practices[J]. Agricultural Water Management,2015,149:74-80.
80 ZHANG C F, LI S, JAMIESON R C,et al. Segment-based assessment of riparian buffers on stream water quality improvement by applying an integrated model [J]. Ecological Modelling,2017,345:1-9.
81 CHENG Changjin, ZHANG Jian, SONG Hanqing,et al. Nitrogen and phosphorus interception effects in surface runoff of Pinus massoniana plantation in Danjiangkou reservoir area[J]. Chinese Journal of Ecology,2021,40(6):1 567-1 573.
程昌锦,张建,宋涵晴,等. 丹江口库区马尾松人工林地表径流氮磷截留效应[J]. 生态学杂志,2021,40(6):1 567-1 573.
82 LV J, WU Y B. Nitrogen removal by different riparian vegetation buffer strips with different stand densities and widths[J]. Water Supply,2021,21(7):3 541-3 556.
83 YANG Dan, FAN Dayong, XIE Zongqiang,et al. Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems[J]. Chinese Journal of Applied Ecology,2016,27(3):973-980.
杨丹,樊大勇,谢宗强,等. 消落带生态系统氮素截留转化的主要机制及影响因素[J]. 应用生态学报,2016,27(3):973-980.
84 WU J Q, XIONG L J, SHA C Y. Removal of N,P from seepage and runoff by different vegetated and slope buffer strips[J]. Water Science and Technology,2020,82(2):351-363.
85 HUANG Shenfa, WU Jianqiang, TANG Hao,et al. Study of clarification for riparian-buffer to non-point pollution [J]. Advances in Water Science,2008,19(5):722-728.
黄沈发,吴建强,唐浩,等. 滨岸缓冲带对面源污染物的净化效果研究[J]. 水科学进展,2008,19(5):722-728.
86 WANG Min, WU Jianqiang, HUANG Shenfa,et al. Effects of slope and width of riparian buffer strips on runoff purification [J]. Acta Ecologica Sinica,2008,28(10):4 951-4 956.
王敏,吴建强,黄沈发,等. 不同坡度缓冲带径流污染净化效果及其最佳宽度[J]. 生态学报,2008,28(10):4 951-4 956.
87 WU Jianqiang. Quantitative study of the damping effect of buffer strips with different slopes on runoff and pollutant removal efficiency[J]. Advances in Water Science,2011,22(1):112-117.
吴建强. 不同坡度缓冲带滞缓径流及污染物去除定量化[J]. 水科学进展,2011,22(1):112-117.
88 LI Xiang, DI Qing. The influence mechanism of stormwater reduction and water purification of urban riparian buffer strip on different stormwater and buffer strip conditions[J]. Acta Ecologica Sinica,2019,39(16):5 932-5 942.
李想,邸青. 暴雨和缓冲带特征对城市滨水缓冲带雨洪消减与水质净化效果的影响机制[J]. 生态学报, 2019,39(16):5 932-5 942.
89 ZHU Xiaocheng, WU Yongbo, YU Yuying,et al. Removing nitrogen with trees planted in the riparian vegetation buffer strips of Taihu Lake[J]. Journal of Zhejiang A & F University,2019,36(3):565-572.
朱晓成,吴永波,余昱莹,等. 太湖乔木林河岸植被缓冲带截留氮素效率[J].浙江农林大学学报,2019,36(3):565-572.
90 WANG Qingcheng, YU Hongli, YAO Qin,et al. Retaining and transformation of incoming soil N from highland to adjacent terrestrial water body in riparian buffer zone[J]. Chinese Journal of Applied Ecology,2007,18(11):2 611-2 617.
王庆成,于红丽,姚琴,等. 河岸带对陆地水体氮素输入的截流转化作用[J]. 应用生态学报,2007,18(11):2 611-2 617.
91 PEAK S, GIL K. Correlation analysis of factors affecting removal efficiency in vegetative filter strips[J]. Environmental Earth Sciences,2015,75(1):1-8.
92 LI Pingping, CUI Bo, FU Weiguo,et al. Effects of riparian buffer vegetation types and width on pollutant removal[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2013,37(6):47-52.
李萍萍,崔波,付为国,等. 河岸带不同植被类型及宽度对污染物去除效果的影响[J]. 南京林业大学学报(自然科学版),2013,37(6):47-52.
93 ZHANG Guangfen. The effects of riparian vegetation buffer zones on nitrogen and phosphorus reduction in Chaobai River upstream[J]. Chinese Agricultural Science Bulletin,2013,29(8):189-194.
张广分. 潮白河上游河岸植被缓冲带对氮、磷去除效果研究[J]. 中国农学通报,2013,29(8):189-194.
94 YUAN Y P, BINGNER R L, LOCKE M A. A review of effectiveness of vegetative buffers on sediment trapping in agricultural areas[J]. Ecohydrology,2009,2(3):321-336.
95 ZHANG Mingcong, HE Songyu, HOU Yujia,et al. Effects of increasing planting density with reduced application nitrogen and rhizobium inoculation methods on N absorption and yield of adzuki bean plants[J]. Soil and Fertilizer Sciences in China,2020(2):133-139.
张明聪,何松榆,侯宇佳,等.增加密度减量施氮和接种根瘤菌对红小豆氮素吸收及产量的影响[J].中国土壤与肥料,2020(2):133-139.
96 HAN J Y, KIM D H,OH S,et al. Effects of water level and vegetation on nitrate dynamics at varying sediment depths in laboratory-scale wetland mesocosms[J]. The Science of the Total Environment,2020,703:134741.
97 HEFTING M, CLÉMENT J C, DOWRICK D,et al. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient[J]. Biogeochemistry,2004,67(1):113-134.
[1] 陈阳军, 陈敏. 亚硝酸盐氮、氧同位素技术及其在海洋氮循环中的应用[J]. 地球科学进展, 2021, 36(12): 1224-1234.
[2] 苏飞, 罗佳琪, 朱晓倩, 童磊, 郑艳艳, 谢玉洁. 湖北省乡村生计弹性测度及其影响因素分析[J]. 地球科学进展, 2021, 36(11): 1117-1126.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[5] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[6] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[7] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
[8] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[9] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[10] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[11] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[12] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[13] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[14] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[15] 刘贤赵, 张勇, 宿庆, 田艳林, 王庆, 全斌. 陆生植物氮同位素组成与气候环境变化研究进展[J]. 地球科学进展, 2014, 29(2): 216-226.
阅读次数
全文


摘要