地球科学进展 ›› 2023, Vol. 38 ›› Issue (9): 954 -966. doi: 10.11867/j.issn.1001-8166.2023.053

研究论文 上一篇    下一篇

藏东南林芝地区冬季大气边界层参数化方案适应性研究
胥佩 1( ), 李茂善 1( ), 常娜 2, 龚铭 3, 伏薇 4   
  1. 1.成都信息工程大学 大气科学学院,高原大气与环境四川省重点实验室,成都平原城市气象与环境四川省野外科学观测研究站,四川 成都 610225
    2.甘肃省气象服务中心,甘肃 兰州 730020
    3.湖南省 常德市 气象局,湖南 常德 415099
    4.四川省雅安市气象局,雅安气象观测站,四川 雅安 625000
  • 收稿日期:2023-06-01 修回日期:2023-08-18 出版日期:2023-09-10
  • 通讯作者: 李茂善 E-mail:xupei16@163.com;lims@cuit.edu.cn
  • 基金资助:
    国家自然科学基金项目(42230610);国家科技专项(2019QZKK0103);四川省自然科学基金项目(2022NSFSC0217)

Parameterized Adaptation of the Winter Atmospheric Boundary Layer in the Nyingchi Region of Southeast Tibet

Pei XU 1( ), Maoshan LI 1( ), Na CHANG 2, Ming GONG 3, Wei FU 4   

  1. 1.School of Atmospheric Sciences, Chengdu University of Information Engineering, Sichuan Key Laboratory of Plateau Atmosphere and Environment, Chengdu Plain Urban Meteorology and Environment Sichuan Field Scientific Observation Research Station, Chengdu 610225, China
    2.Meteorological Service Center of Gansu Province, Lanzhou 730020, China
    3.Hunan Meteorological Office, Changde Hunan ;415099, China
    4.Sichuan Meteorological Office, Yaan Meteorological Observation Station, Yaan Sichuan 625000, China
  • Received:2023-06-01 Revised:2023-08-18 Online:2023-09-10 Published:2023-09-25
  • Contact: Maoshan LI E-mail:xupei16@163.com;lims@cuit.edu.cn
  • About author:XU Pei, Master student, research areas include atmospheric boundary layer structure. E-mail: xupei16@163.com
  • Supported by:
    the National Natural Science Foundation of China(42230610);The Ministry of Science and Technology of China(2019QZKK0103);The Natural Science Foundation of Sichuan Province(2022NSFSC0217)

参数化方案的不确定使得数值模拟难以准确描述大气边界层过程,近年来受到研究人员的关注。采用WRF模式的YSU、ACM2、QNSE和Boulac 4种边界层方案对藏东南冬季大气边界层进行数值模拟试验,并利用2022年1月3~9日无线电探空观测资料,对大气边界层结构特征,包括位温、比湿、风向和风速,以及近地层、地表温度和热通量模式结果进行验证,分析研究不同边界层参数化方案在藏东南林芝地区的适用性。结果表明:ACM2方案对位温的模拟偏差最小。当对流交换较弱时,参数化方案对边界层模拟误差偏小。局地与非局地混合作用相比湍流动能对边界层发展贡献更大。对于边界层高度,TKE方案作用的影响大于非局地方案。对于比湿,模拟结果显示出明显的偏干现象。整体上BouLac方案与观测值最接近。对于地面气温和地面温度的模拟,各参数化方案的模拟值与观测值的变化趋势较为一致,其中ACM2方案效果最好。冬季潜热通量较小,感热通量起主导作用,BouLac方案在模拟热通量方面表现较好。

The uncertainty of parameterization schemes makes it difficult for numerical simulations to describe atmospheric boundary layer processes accurately, and has, therefore, been the focus of many researchers in recent years. Four boundary layer schemes, namely the WRF model YSU, ACM2, QNSE, and BouLac, were used to conduct numerical simulation experiments on the atmospheric boundary layer in winter in Southeast Tibet. Radio sounding observations from January 3 to January 9, 2022, were used for validating the atmospheric boundary layer structural characteristics, including temperature, specific humidity, wind direction, wind speed, as well as the modeled results for the near-surface stratum, surface temperature, and heat fluxes. Subsequently, the applicability of different boundary layer parameterization schemes in Nyingchi, Southeast Tibet, was evaluated. Results show that the ACM2 scheme exhibits the smallest simulation deviation for the potential temperature. When convective exchange is weak, the parameterization scheme has a small boundary layer simulation error. Local versus nonlocal mixing contributes more to the boundary layer development than turbulent kinetic energy. For the boundary layer height, the effect of the TKE scheme is greater than that of the nonlocal scheme. For specific humidity, the simulations show significant drying out, and the BouLac scenario is overall the closest to the observations. For wind speed, simulations are more consistent with the observations. For the surface air temperature and surface temperature, the simulated values of the parameterized schemes are more consistent with the trend of the observed values, and the ACM2 scheme is the most effective. In winter, latent heat flux is low, sensible heat flux plays a dominant role, and the BouLac scheme simulates them most appropriately.

中图分类号: 

图1 WRF模型嵌套域(a)和d04中观测站的位置(b
彩色区域表示地形高度,黑点为观测地点
Fig. 1 The nested domain of the WRF modelaand the location of the observatory in d04b
Colored areas indicate terrain height, black dots are observation locations
表1 WRF模拟区域设置
Table 1 WRF simulation area settings
表2 WRF模式的 4种不同参数化方案
Table 2 Four different parameterization schemes of WRF mode
图2 林芝地区202213~9日位温廓线观测值与YSUACM2QNSEBouLac模拟值对比
Fig. 2 Comparison of the observed values of the bit temperature profile with the simulated values of YSUACM2QNSE and BouLac in Nyingchi districtJanuary 3~92022
表3 202213~9日模式模拟的位温垂直分布与观测的统计比较 (K)
Table 3 Statistical comparison of the vertical distribution of model simulated potential temperature with observationsJanuary 3~92022
图3 林芝地区202213~9日,比湿廓线观测值与YSUACM2QNSEBouLac模拟值对比
Fig. 3 Comparison of observed specific humidity profiles with simulated values of YSUACM2QNSEand BouLac in Nyingchi districtJanuary 3~92022
表4 202213~9日模式模拟比湿垂直分布与观测的统计比较 (g/kg)
Table 4 Statistical comparison of model-simulated vertical distribution of specific humidity with observationsJanuary 3~92022
图4 林芝地区202213~9日,风速廓线观测值与YSUACM2QNSEBouLac模拟值对比
Fig. 4 Comparison of wind speed profile observations with YSUACM2QNSE and BouLac simulations in Nyingchi districtJanuary 3~92022
图5 林芝地区202213~9日,风向廓线观测值与YSUACM2QNSEBouLac模拟值对比
Fig. 5 Comparison of wind profile observations with YSUACM2QNSE and BouLac simulations in Nyingchi districtJanuary 3~92022
图6 林芝地区202213~9日不同参数化方案与观测数据计算的边界层高度对比
Fig. 6 Comparison of boundary layer heights calculated by different parameterization schemes with observed data in Nyingchi districtJanuary 3~92022
图7 林芝地区202213~9日近地层(2 m)气温、地表温度与模拟对比的时间序列
(a) 近地层气温;(b) 地表温度
Fig. 7 Time series of near-surface2 mair temperature and surface temperature versus simulation in Nyingchi districtJanuary 3~92022
(a) Near-surface air temperature; (b) Surface temperature
表5 202213~9日模式模拟的近地层( 2 m)气温和地表温度与观测的统计比较 (℃)
Table 5 Statistical comparison of model simulated near-surface2 mand surface temperatures with observations on January 3~92022
图8 林芝地区202213~9日热通量与模拟对比的时间序列
(a)感热通量;(b)潜热通量;(c)净辐射
Fig. 8 Time series of comparison between heat flux and simulation in Nyingchi districtJanuary 3~92022
(a) Sensible heat fluxes; (b) Latent heat fluxes; (c) Net radiation
表6 202213~9日模式模拟热通量与观测的统计比较 (W/m 2)
Table 6 Statistical comparison of model simulated heat fluxes with observationsJanuary 3~92022
1 WU Guoxiong, MAO Jiangyu, DUAN Anmin, et al. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540.
吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 2004, 62(5): 528-540.
2 MA Yaoming, HU Zeyong, TIAN Lide, et al. Progress in the study of climate system changes on the Qinghai-Tibet Plateau and their impacts and mechanisms on the East Asian region[J]. Advances in Earth Science, 2014, 29(2): 207-215.
马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
3 XU Xiangde, CHEN Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772.
徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
4 ZHU Yuxiang, DING Yihui, XU Huaigang. The decadal relationship between atmospheric heat source of winter and spring snow over Tibetan Plateau and rainfall in East China[J]. Acta Meteorologica Sinica, 2007, 65(6): 946-958.
朱玉祥, 丁一汇, 徐怀刚. 青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J]. 气象学报, 2007, 65(6): 946-958.
5 DEARDORFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1972, 29(1): 91-115.
6 SEIBERT P, BEYRICH F, GRYNING S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1 001-1 027.
7 MEDEIROS B, HALL A, STEVENS B. What controls the mean depth of the PBL?[J]. Journal of Climate, 2005, 18(16): 3 157-3 172.
8 LIU S Y, LIANG X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 2010, 23(21): 5 790-5 809.
9 LEVENTIDOU E, ZANIS P, BALIS D, et al. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmospheric Environment, 2013, 74: 360-366.
10 KONOR C S, BOEZIO G C, MECHOSO C R, et al. Parameterization of PBL processes in an atmospheric general circulation model: description and preliminary assessment[J]. Monthly Weather Review, 2009, 137(3): 1 061-1 082.
11 YE Duzheng. Meteorology of Qinghai-Tibet Plateau[M]. Beijing: Science Press, 1979.
叶笃正. 青藏高原气象学[M]. 北京: 科学出版社, 1979.
12 ZHOU Wen, YANG Shengpeng, JIANG Xi, et al. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data[J]. Acta Meteorologica Sinica, 2018, 76(1): 117-133.
周文, 杨胜朋, 蒋熹, 等. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J]. 气象学报, 2018, 76(1): 117-133.
13 ZUO H C, HU Y Q, LI D L, et al. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science, 2005, 15(3): 239-245.
14 LI Maoshan, DAI Youxue, MA Yaoming, et al. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over mount Qomolangma region[J]. Plateau Meteorology, 2006, 25(5): 807-813.
李茂善, 戴有学, 马耀明, 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813.
15 CHEN X L, AÑEL J A, SU Z B, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2). DOI: 10.1371/journal.pone.0056909 .
16 CHE J H, ZHAO P. Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors[J]. Atmospheric Chemistry and Physics, 2021, 21(7): 5 253-5 268.
17 GU L L, YAO J M, HU Z Y, et al. Characteristics of the atmospheric boundary layer’s structure and heating (cooling) rate in summer over the Northern Tibetan Plateau[J]. Atmospheric Research, 2022, 269. DOI: 10.1016/j.atmosres.2022.106045 .
18 CHOU Yan. Numerical simulation study on the formation of deep atmospheric boundary layer on Qinghai-Tibet Plateau and its influence on ozone transport[D]. Lanzhou: Lanzhou University, 2022.
丑岩. 青藏高原深厚大气边界层的形成及其对臭氧传输影响的数值模拟研究[D]. 兰州: 兰州大学, 2022.
19 WANG Qianru. Numerical simulation of the influence of atmospheric boundary layer height on plateau vortex in Qinghai-Tibet Plateau[D]. Chengdu: Chengdu University of Information Engineering, 2018.
王倩茹. 青藏高原大气边界层高度对高原涡影响的数值模拟[D]. 成都: 成都信息工程大学, 2018.
20 WANG Yinjun. Study on the parameterization of Dali boundary layer and the influence of turbulence characteristics in the southeast margin of Qinghai-Tibet Plateau[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014.
王寅钧. 青藏高原东南缘大理边界层参数化与湍流特征影响研究[D]. 北京: 中国气象科学研究院, 2014.
21 LI Maoshan, MA Yaoming, Shihua LÜ, et al. Modeling of near surface energy and characteristic of boundary layer in the northern Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(1): 36-45
李茂善, 马耀明, 吕世华, 等. 藏北高原地表能量和边界层结构的数值模拟[J]. 高原气象, 2008, 27(1): 36-45.
22 ZHANG Xiaopei, YIN Yan. Evaluation of the four PBL schemes in WRF Model over complex topographic areas[J]. Journal of Nanjing Institute of Meteorology, 2013, 36(1): 68-76.
张小培, 银燕. 复杂地形地区WRF模式四种边界层参数化方案的评估[J]. 大气科学学报, 2013, 36(1): 68-76.
23 WANG Chenggang, SHEN Yingjie, LUO Feng, et al. Comparative analysis of several boundary layer parameterization schemes in WRF model under sunny and cloudy conditions[J]. Chinese Journal of Geophysics, 2017, 60(3): 924-934.
王成刚, 沈滢洁, 罗峰, 等. 晴天及阴天条件下WRF模式中几种边界层参数化方案的对比分析研究[J]. 地球物理学报, 2017, 60(3): 924-934.
24 LI Fei, ZOU Han, ZHOU Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in southeast Tibet[J]. Plateau Meteorology, 2017, 36(2): 340-357.
李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017, 36(2): 340-357.
25 XU Lujun, LIU Huizhi, XU Xiangde, et al. Applicability of WRF model to simulation of atmospheric boundary layer in Naqu area of Qinghai-Tibet Plateau[J]. Acta Meteorologica Sinica, 2018, 76(6): 955-967.
许鲁君, 刘辉志, 徐祥德, 等. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J]. 气象学报, 2018, 76(6):955-967.
26 DAI C Y, GAO Z Q, WANG Q, et al. Analysis of atmospheric boundary layer height characteristics over the Arctic Ocean using the aircraft and GPS soundings[J]. Atmospheric and Oceanic Science Letters, 2011, 4(2): 124-130.
27 LIN Y L, JAO I C. A numerical study of flow circulations in the central valley of California and formation mechanisms of the Fresno eddy[J]. Monthly Weather Review, 1995, 123(11): 3 227-3 239.
28 DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3 077-3 107.
29 MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-K model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16 663-16 682.
30 GRELL G A, DÉVÉNYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14). DOI: 10.1029/2002GL015311 .
31 CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. part I: model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569-585.
32 HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341.
33 PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 383-1 395.
34 SUKORIANSKY S, GALPERIN B, PEROV V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005, 117(2): 231-257.
35 BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890.
36 CHEN X L, LIU Y M, WU G X. Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau[J].Advances in Atmospheric Sciences, 2017, 34(12): 1 447-1 460.
[1] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[2] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[3] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[4] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[5] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[6] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[7] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[8] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[9] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[10] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[11] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[12] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[13] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[14] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[15] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
阅读次数
全文


摘要