地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 414 -428. doi: 10.11867/j.issn.1001-8166.2023.013

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原大气边界层结构及其发展机制研究
王春晓 1 , 2( ), 马耀明 1 , 2 , 3 , 4 , 5 , 6( ), 韩存博 1 , 2 , 4 , 6   
  1. 1.中国科学院青藏高原研究所青藏高原地球系统与资源环境国家重点实验室地气作用与气候效应团队,北京 100101
    2.中国科学院大学地球与行星科学学院,北京 100101
    3.兰州大学大气科学学院,甘肃 兰州 730000
    4.西藏珠穆朗玛特殊大气过程与环境变化国家野外科学观测研究站,西藏 定日 858200
    5.中国科学院加德满都科教中心,北京 100101
    6.中国—巴基斯坦 地球科学研究中心,伊斯兰堡 45320,巴基斯坦
  • 收稿日期:2022-12-17 修回日期:2023-02-20 出版日期:2023-04-04
  • 通讯作者: 马耀明 E-mail:wangchx@itpcas.ac.cn;ymma@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金项目“珠穆朗玛峰南北坡地区复杂地表地气间水热交换变化规律研究”(42230610);国家科技专项“第二次青藏高原综合科学考察研究”任务一之第3专题“地气相互作用及其气候效应”(2019QZKK0103)

Research on the Atmospheric Boundary Layer Structure and Its Development Mechanism in the Tibetan Plateau

Chunxiao WANG 1 , 2( ), Yaoming MA 1 , 2 , 3 , 4 , 5 , 6( ), Cunbo HAN 1 , 2 , 4 , 6   

  1. 1.Land-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.Collega of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
    3.College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China
    4.National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Dingri Tibet 858200, China
    5.Kathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing 100101, China
    6.China -Pakistan Joint Research Center on Earth Sciences, Islamabad 45320, Pakistan
  • Received:2022-12-17 Revised:2023-02-20 Online:2023-04-04 Published:2023-04-18
  • Contact: Yaoming MA E-mail:wangchx@itpcas.ac.cn;ymma@itpcas.ac.cn
  • About author:WANG Chunxiao (1999-), female, Taian City, Shandong Province, Master student. Research areas include atmospheric boundary layer observation and simulation. E-mail: wangchx@itpcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “The study of land-atmosphere water and heat flux interaction over the complex terrain of north and south slopes of the Qomolangma region”(42230610);The Ministry of Science and Technology of China “Land-atmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program”(2019QZKK0103)

研究青藏高原大气边界层对于我们认识其地面的热量与水分收支状况,了解高原及其周边地区的天气和气候变化具有重要意义。然而,高原大气边界层观测资料的匮乏制约着青藏高原的天气与气候研究。首先,梳理了针对青藏高原大气边界层的大气科学试验情况;其次,归纳了青藏高原大气边界层的高度与风场结构、温度与湿度场结构的研究进展,并从热力学和大气动力学角度介绍了大气边界层的发展机制,在此基础上,对目前研究中存在的不足进行了探讨,指出青藏高原大气边界层的研究还处于揭示现象阶段,对发展机制的研究不够深入,对整个高原面上不同区域同一时间的联动研究较少。针对上述不足之处对未来的研究方向进行了展望。

Studying the atmospheric boundary layer over the Tibetan Plateau is of great significance for understanding the heat and water budget, weather, and climate change of the plateau and its surrounding areas. However, the research on the weather and climate of the Tibetan Plateau is restricted by the lack of observational data. The atmospheric science experiments on the atmospheric boundary layer over the Tibetan Plateau were reviewed in the present study. Furthermore, the research progress on the height, wind field structure, temperature, and humidity field structure of the atmospheric boundary layer over the Tibetan Plateau was summarized, and the development mechanism of the atmospheric boundary layer was introduced from the perspectives of thermal and atmospheric dynamics. Accordingly, the shortcomings of the current research in this field were discussed, and it was highlighted that the research on the atmospheric boundary layer of the Tibetan Plateau is still in the exploration stage and that the research on the development mechanism is not thorough enough. Few studies have simultaneously examined the linkages between different regions on the plateau at the same time. Finally, considering the aforementioned shortcomings, future developments have been proposed.

中图分类号: 

图1 大气边界层研究进展的示意图 11
Fig. 1 Schematic diagram of the research progress in atmospheric boundary layer 11
表1 青藏高原地区观测到的高度较高的大气边界层
Table 1 The deep atmospheric boundary layers observed over the Tibetan Plateau
图2 对流边界层高度与实时感热通量(a)和累积感热通量(b)的相关对比 78
Fig. 2 Correlation of convective boundary layer thickness with real-time sensible heat fluxaand cumulative sensible heat fluxb 78
图3 对流边界层与残余层之间的正反馈循环增长形成超厚对流大气边界层的示意图 78
Fig. 3 Schematic diagram of positive feedback growth mechanism between super thick convective boundary layer and residual layer 78
图4 运动的类型(a)和大气运动的示意图(b 97
数字表示不同的边界层过程:1. 贯穿对流;2. 热泡穿透对流边界层顶,到达残余层并返回;3. 热泡穿透残余层,到达自由大气并返回
Fig. 4 Examples of types of motionsaand schematic descriptions of motionsb 97
The numbers indicate different boundary-layer processes:1. Penetrative convection; 2. Overshooting thermals detrain from the convective boundary layer top, reach the residual layer, and return; 3. Overshooting thermals penetratethe residual layer, reach the free atmosphere, and return
图5 大气边界层高度与东部高原和西部高原影响因素的关系示意图 41
Fig. 5 The schematic diagram for relationships between the atmospheric boundary layer height and the influential factors in the eastern Tibet Plateau and the western Tibetan Plateau 41
图6 青藏高原上方边界层示意图 16
Fig. 6 Schematic figure of the atmospheric boundary layer above the Tibetan Plateau 16
图7 20141123日西风环流、大尺度西南风以及西风动量向下传输对地表风场、地表热通量、残余层和大气边界层高度影响的物理过程流程图 110
Fig. 7 Flow chart of the physical process of the influence of the westerly circulationlarge-scale southwest wind and downward transmission of westerly momentum on surface wind fieldsurface heat fluxresidual layer and atmospheric boundary layer height on 23 November2014 110
图8 青藏高原大气边界层结构及其发展机制研究方案与技术路线
Fig. 8 Research scheme and technical route of the atmospheric boundary layer structure and its development mechanism on the Tibetan Plateau
1 QIU J. China: the Third Pole[J]. Nature, 2008, 454(7 203): 393-396.
2 MA Y M, MA W Q, ZHONG L, et al. Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia[J]. Scientific Reports, 2017, 7. DOI:10.1038/srep44574 .
3 YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change, 2014, 112: 79-91.
4 JI Guoliang, GU Benwen, Lanzhi LÜ. Characteristics of atmospheric heating field over northern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2002, 21(3): 238-242.
季国良, 顾本文, 吕兰芝. 青藏高原北部的大气加热场特征[J]. 高原气象, 2002, 21(3): 238-242.
5 LI Juan, LI Yueqing, JIANG Xingwen, et al. Characteristics of land-atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(4): 777-791.
李娟, 李跃清, 蒋兴文, 等. 青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析[J]. 大气科学, 2016, 40(4): 777-791.
6 WU Guoxiong, LIU Xin, ZHANG Qiong, et al. Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau[J]. Climatic and Environmental Research, 2002, 7(2): 184-201.
吴国雄, 刘新, 张琼, 等. 青藏高原抬升加热气候效应研究的新进展[J]. 气候与环境研究, 2002, 7(2): 184-201.
7 LIU Xiaodong, HUI Xiaoying, CHEN Baode. Influence of heat source anormal of underlying surface over Tibetan Plateau and western tropical Pacific on short-term climate in China[J]. Plateau Meteorology, 1991, 10(3): 305-316.
刘晓东, 惠小英, 陈葆德. 夏季青藏高原与热带西太平洋下垫面热源异常对中国短期气候的影响[J]. 高原气象, 1991, 10(3): 305-316.
8 OSAMU T, HIROHIKO I, ICHIRO T. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science, 2002, 12(1). DOI:10.1016/S0079-6425(01)00007-X .
9 MA Yaoming, MA Weiqiang, HU Zeyong, et al. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2002, 21(5): 514-517.
马耀明, 马伟强, 胡泽勇, 等. 青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 2002, 21(5): 514-517.
10 MA Yaoming, OSAMU Tsukamoto, WU Xiaoming, et al. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan Plateau area[J]. Scientia Atmospherica Sinica, 2000, 24(5): 715-722.
马耀明, 塚本修, 吴晓鸣, 等. 藏北高原草甸下垫面近地层能量输送及微气象特征[J]. 大气科学, 2000, 24(5): 715-722.
11 CHE Junhui, ZHAO Ping, SHI Qian, et al. Research progress in atmospheric boundary layer[J]. Chinese Journal of Geophysics, 2021, 64(3): 735-751.
车军辉, 赵平, 史茜, 等. 大气边界层研究进展[J]. 地球物理学报, 2021, 64(3): 735-751.
12 DEARDORFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1972, 29(1): 91-115.
13 ZHANG Qiang, WEI Guoan, HOU Ping. Observation studies of atmosphere boundary layer characteristic over Dunhuang Gobi in early summer[J]. Plateau Meteorology, 2004, 23(5): 587-597.
张强, 卫国安, 侯平. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究[J]. 高原气象, 2004, 23(5): 587-597.
14 CUESTA J, EDOUART D, MIMOUNI M, et al. Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon multidisciplinary analysis field campaign conducted in 2006[J]. Journal of Geophysical Research, 2008, 113. DOI: 10.1029/2007JD009417 .
15 SLÄTTBERG N, LAI H W, CHEN X L, et al. Spatial and temporal patterns of planetary boundary layer height during 1979-2018 over the Tibetan Plateau using ERA5[J]. International Journal of Climatology, 2022, 42(6): 3 360-3 377.
16 CHEN X L, ŠKERLAK B, ROTACH M W, et al. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2 021-2 038.
17 MA J, LIN W L, ZHENG X D, et al. Influence of air mass downward transport on the variability of surface ozone at Xianggelila regional atmosphere background station, southwest China[J]. Atmospheric Chemistry and Physics, 2014, 14(11): 5 311-5 325.
18 ZHAO Ping, LI Yueqing, GUO Xueliang, et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: the Third Tibetan Plateau Atmospheric Scientific Experiment[J]. Acta Meteorologica Sinica, 2018, 76(6): 833-860.
赵平, 李跃清, 郭学良, 等. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J]. 气象学报, 2018, 76(6): 833-860.
19 WU Guoxiong, LIU Yimin, LIU Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1): 47-56, 167.
吴国雄, 刘屹岷, 刘新, 等. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 2005, 29(1): 47-56, 167.
20 LI Ying, HU Zhili, ZHAO Hongmei. Overview on the characteristic of boundary layer structure in Tibetan Plateau[J]. Plateau and Mountain Meteorology Research, 2012, 32(4): 91-96.
李英, 胡志莉, 赵红梅. 青藏高原大气边界层结构特征研究综述[J]. 高原山地气象研究, 2012, 32(4): 91-96.
21 ZHUOGA, XU Xiangde, CHEN Lianshou. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. Quarterly Journal of Applied Meteorlolgy, 2002, 13(2): 163-169.
卓嘎, 徐祥德, 陈联寿. 青藏高原边界层高度特征对大气环流动力学效应的数值试验[J]. 应用气象学报, 2002, 13(2): 163-169.
22 TAO S Y, LUO S W, ZHANG H C. The Qinghai-Xizang Plateau Meteorological Experiment (Qxpmex) May-August 1979[C]// Proceedings of international symposium on the Qinghai-Xizang Plateau and mountain meteorology. Boston, MA: American Meteorological Society, 1986: 3-13.
23 GONG Yuanfa, DUAN Tingyang, CHEN Longxun, et al. Outline of observational study of Japan cooperative program on Asian monsoon over Tibetan Plateau[J]. Journal of Chengdu Institute of Meteorology, 1997, 12(1): 18-27.
巩远发, 段廷扬, 陈隆勋, 等. 《中日亚洲季风机制合作研究计划》青藏高原观测研究概况[J]. 成都气象学院学报, 1997, 12(1): 18-27.
24 CHEN Lianshou, XU Xiangde. Progress in pre-research of land-air process and boundary layer observation in the Second Atmospheric Science Experiment (TIPEX) on the Qinghai-Tibet Plateau in 1998[J]. Annual Report of CAMS, 1998(0): 20-21.
25 WANG Jiemin. Land surface process experiments and interaction study in China—from HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.
王介民. 陆面过程实验和地气相互作用研究: 从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3): 280-294.
26 MA Yaoming, YAO Tandong, WANG Jiemin. Experimental study of energy and water cycle in Tibetan Plateau—the progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteorology, 2006, 25(2): 344-351.
马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究: GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2): 344-351.
27 XU X, ZHANG R, KOIKE T, et al. A new integrated observational system over the Tibetan Plateau[J]. Bulletin of the American Meteorological Society, 2008, 89(10): 1 492-1 496.
28 ZHANG Renhe, XU Xiangde. An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern region—a China-Japan cooperative JICA project[J]. Engineering Sciences, 2012, 14(9): 102-112.
张人禾, 徐祥德. 青藏高原及东缘新一代大气综合探测系统应用平台: 中日合作JICA项目[J]. 中国工程科学, 2012, 14(9): 102-112.
29 SEIBERT P, BEYRICH F, GRYNING S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1 001-1 027.
30 MEDEIROS B, HALL A, STEVENS B. What controls the mean depth of the PBL?[J]. Journal of Climate, 2005, 18(16): 3 157-3 172.
31 LIU S Y, LIANG X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 2010, 23(21): 5 790-5 809.
32 LEVENTIDOU E, ZANIS P, BALIS D, et al. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmospheric Environment, 2013, 74: 360-366.
33 KONOR C S, BOEZIO G C, MECHOSO C R, et al. Parameterization of PBL processes in an atmospheric general circulation model: description and preliminary assessment[J]. Monthly Weather Review, 2009, 137(3): 1 061-1 082.
34 HOLTSLAG A M, NIEUWSTADT F M. Scaling the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1986, 36(1): 201-209.
35 YE Duzheng, GAO Youxi. Meteorology of Qinghai-Tibet Plateau[M]. Beijing: Science Press, 1979.
叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979.
36 XU Xiangde, ZHOU Mingyu, CHEN Jiayi, et al. Comprehensive physical image of dynamic and thermal structure of ground-air process in Qinghai-Tibet Plateau[J]. Science in China Series D: Earth Science, 2001, 31(5): 428-441.
徐祥德, 周明煜, 陈家宜, 等. 青藏高原地—气过程动力、热力结构综合物理图象[J]. 中国科学D辑: 地球科学, 2001, 31(5): 428-441.
37 GARRATT J R. The atmospheric boundary layer[M]. Cambridge: Cambridge University Press, 1992.
38 ZUO H C, HU Y Q, LI D L, et al. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science, 2005, 15(3): 239-245.
39 LI Maoshan, DAI Youxue, MA Yaoming, et al. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over mount Qomolangma region[J]. Plateau Meteorology, 2006, 25(5): 807-813.
李茂善, 戴有学, 马耀明, 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813.
40 CHEN X L, AÑEL J A, SU Z B, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2). DOI:10.1371/journal.pone.0056909 .
41 CHE J H, ZHAO P. Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors[J]. Atmospheric Chemistry and Physics, 2021, 21(7): 5 253-5 268.
42 GU L L, YAO J M, HU Z Y, et al. Characteristics of the atmospheric boundary layer’s structure and heating (cooling) rate in summer over the Northern Tibetan Plateau[J]. Atmospheric Research, 2022, 269. DOI: 10.1016/j.atmosres.2022.106045 .
43 YANG K, KOIKE T, FUJII H, et al. The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: observations and simulations[J]. Journal of the Meteorological Society of Japan Series II, 2004, 82(6): 1 777-1 792.
44 LI Fei, ZOU Han, ZHOU Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in southeast Tibet[J]. Plateau Meteorology, 2017, 36(2): 340-357.
李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017, 36(2): 340-357.
45 LI Maoshan, MA Yaoming, MA Weiqiang, et al. Structural difference of atmospheric boundary layer between dry and rainy seasons over the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 72-79.
李茂善, 马耀明, 马伟强, 等. 藏北高原地区干、雨季大气边界层结构的不同特征[J]. 冰川冻土, 2011, 33(1): 72-79.
46 XU Guirong, CUI Chunguang, ZHOU Zhimin, et al. Atmospheric boundary layer heights estimated from radiosonde observations in the Qinghai-Tibet Plateau and its downstream areas[J]. Torrential Rain and Disasters, 2014, 33(3): 217-227.
徐桂荣, 崔春光, 周志敏, 等. 利用探空资料估算青藏高原及下游地区大气边界层高度[J]. 暴雨灾害, 2014, 33(3): 217-227.
47 ZHOU Wen, YANG Shengpeng, JIANG Xi, et al. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data[J]. Acta Meteorologica Sinica, 2018, 76(1): 117-133.
周文, 杨胜朋, 蒋熹, 等. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J]. 气象学报, 2018, 76(1): 117-133.
48 WANG Qianru, FAN Guangzhou, GE Fei, et al. Climatic characteristics of the diurnal variation boundary layer height over the Qinghai-Tibetan Plateau based on CERA-20C[J]. Plateau Meteorology, 2018, 37(6): 1 486-1 498.
王倩茹, 范广洲, 葛非, 等. 基于CERA-20C资料青藏高原边界层高度日变化气候特征分析[J]. 高原气象, 2018, 37(6): 1 486-1 498.
49 MA Yuancang, LI Yanying, YANG Jiping, et al. Relationships between boundary layer height and different disaster weathers in north-central Qinghai Province[J]. Plateau Meteorology, 2019, 38(5): 1 048-1 057.
马元仓, 李岩瑛, 杨吉萍, 等. 青海中北部边界层高度与不同灾害天气的关系[J]. 高原气象, 2019, 38(5): 1 048-1 057.
50 ZUO Hongchao, HU Yinqiao, Shihua LÜ, et al. Transition of dry and wet seasons and boundary layer characteristics in Amdo area of Qinghai-Tibet Plateau[J]. Progress in Natural Science, 2004, 14(5): 535-540.
左洪超, 胡隐樵, 吕世华, 等. 青藏高原安多地区干、湿季的转换及其边界层特征[J]. 自然科学进展, 2004, 14(5): 535-540.
51 SONG Xingzhuo, ZHANG Hongsheng, LIU Xinjian, et al. Determination of atmospheric boundary layer height in unstable conditions over the middle Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 328-333.
宋星灼, 张宏升, 刘新建, 等. 青藏高原中部地区不稳定大气边界层高度的确定与分析[J]. 北京大学学报(自然科学版), 2006, 42(3): 328-333.
52 LIU Hongyan, MIAO Manqian. Preliminary analysis on character isiics of boundary layer in Qinghai-Tibet Paleaut[J]. Journal of Naijing University (Natural Sciences), 2001, 37(3): 348-357.
刘红燕, 苗曼倩. 青藏高原大气边界层特征初步分析[J]. 南京大学学报(自然科学版), 2001, 37(3): 348-357.
53 LI Maoshan, MA Yaoming, HU Zeyong, et al. Study on characteristics of atmospheric boundary layer over Naqu region of northern Tibetan Plateau[J]. Plateau Meteorology, 2004, 23(5): 728-733.
李茂善, 马耀明, 胡泽勇, 等. 藏北那曲地区大气边界层特征分析[J]. 高原气象, 2004, 23(5): 728-733.
54 LI Jialun, HONG Zhongxiang, SUN Shufen. An observational experiment on the atmospheric boundary layer in gerze area of the Tibetan Plateau[J]. Scientia Atmospherica Sinica, 2000, 24(3): 301-312.
李家伦, 洪钟祥, 孙菽芬. 青藏高原西部改则地区大气边界层特征[J]. 大气科学, 2000, 24(3): 301-312.
55 XU Lujun, LIU Huizhi, XU Xiangde, et al. Evaluation of the WRF model to simulate atmospheric boundary layer over Nagqu area in the Tibetan Plateau[J]. Acta Meteorologica Sinica, 2018, 76(6): 955-967.
许鲁君, 刘辉志, 徐祥德, 等. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J]. 气象学报, 2018, 76(6): 955-967.
56 SU Yanru, Shihua LÜ, FAN Guangzhou. The characteristics analysis on the summer atmospheric boundary layer height and surface heat fluxes over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6): 1 470-1 485.
苏彦入, 吕世华, 范广洲. 青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J]. 高原气象, 2018, 37(6): 1 470-1 485.
57 XU L J, LIU H Z, DU Q, et al. The assessment of the planetary boundary layer schemes in WRF over the central Tibetan Plateau[J]. Atmospheric Research, 2019, 230. DOI:10.1016/j.atmosres.2019.104644 .
58 ZHU Lingyun, ZHANG Meigen, MA Shupo, et al. Numerical simulation of atmospheric boundary layer structure over rongbuk valley of Mt. Qomolangma[J]. Plateau Meteorology, 2007, 26(6): 1 208-1 213.
朱凌云, 张美根, 马舒坡, 等. 珠峰绒布河谷大气边界层结构的数值模拟[J]. 高原气象, 2007, 26(6): 1 208-1 213.
59 Yaqiong LÜ, MA Yaoming, LI Maoshan, et al. Study on characteristic of atmospheric boundary layer over Lake Namco region, Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(6): 1 205-1 210.
吕雅琼, 马耀明, 李茂善, 等. 青藏高原纳木错湖区大气边界层结构分析[J]. 高原气象, 2008, 27(6): 1 205-1 210.
60 SUN F L, MA Y M, LI M S, et al. Boundary layer effects above a Himalayan valley near Mount Everest[J]. Geophysical Research Letters, 2007, 34(8). DOI:10.1029/2007GL029484 .
61 SUN Fanglin, MA Yaoming, MA Weiqiang, et al. One observational study on atmospheric boundary layer structure in Mt.Qomolangma region[J]. Plateau Meteorology, 2006, 25(6): 1 014-1 019.
孙方林, 马耀明, 马伟强, 等. 珠峰地区大气边界层结构的一次观测研究[J]. 高原气象, 2006, 25(6): 1 014-1 019.
62 CHEN Xuelong, MA Yaoming, SUN Fanglin, et al. The rainy season character of troposphere at Mt. Qomolangma region[J]. Plateau Meteorology, 2007, 26(6): 1 280-1 286.
陈学龙, 马耀明, 孙方林, 等. 珠峰地区雨季对流层大气的特征分析[J]. 高原气象, 2007, 26(6): 1 280-1 286.
63 ZHU Chunling, MA Yaoming, CHEN Xuelong. Atmospheric boundary layer structure in the west and the southeastern periphery of the Tibetan Plateau during the pre-monsoon period[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 325-333.
朱春玲, 马耀明, 陈学龙. 青藏高原西部及东南周边地区季风前大气边界层结构分析[J]. 冰川冻土, 2011, 33(2): 325-333.
64 SUN F L, MA Y M, HU Z Y, et al. Observation of strong winds on the northern slopes of mount Everest in monsoon season[J]. Arctic, Antarctic, and Alpine Research, 2017, 49(4): 687-697.
65 SUN F L, MA Y M, HU Z Y, et al. Mechanism of daytime strong winds on the northern slopes of Himalayas, near mount Everest: observation and simulation[J]. Journal of Applied Meteorology and Climatology, 2018, 57(2): 255-272.
66 FU Wei, LI Maoshan, YIN Shucheng, et al. Study on the atmospheric boundary layer structure of the Qinghai-Xizang Plateau under the south branch of the westerly wind and the plateau monsoon circulation field[J]. Plateau Meteorology, 2022, 41(1): 190-203.
伏薇, 李茂善, 阴蜀城, 等. 西风南支与高原季风环流场下青藏高原大气边界层结构研究[J]. 高原气象, 2022, 41(1): 190-203.
67 MA Weiqiang, DAI Youxue, MA Yaoming, et al. Analysis on the boundary layer and spatial profile of northern Tibetan Plateau area by radiosonde data[J]. Journal of Arid Land Resources & Environment, 2005, 19(3): 40-46.
马伟强, 戴有学, 马耀明, 等. 利用无线电探空资料分析藏北高原地区边界层及其空间结构特征[J]. 干旱区资源与环境, 2005, 19(3): 40-46.
68 WANG Shuzhou, MA Yaoming. The structure of atmospheric boundary layer over mount Qomolangma in summer[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 681-687.
王树舟, 马耀明. 珠峰地区夏季大气边界层结构初步分析[J]. 冰川冻土, 2008, 30(4): 681-687.
69 COUVREUX F, GUICHARD F, GOUNOU A, et al. Modelling of the thermodynamical diurnal cycle in the lower atmosphere: a joint evaluation of four contrasted regimes in the tropics over land[J]. Boundary-Layer Meteorology, 2014, 150(2): 185-214.
70 XU H X, WANG M Z, WANG Y J, et al. Performance of WRF large eddy simulations in modeling the convective boundary layer over the Taklimakan Desert, China[J]. Journal of Meteorological Research, 2018, 32(6): 1 011-1 025.
71 STULL R B. Boundary layer clouds[M]// An introduction to boundary layer meteorology. Dordrecht: Springer Netherlands, 1988: 545-585.
72 REEN B P, STAUFFER D R, DAVIS K J. Land-surface heterogeneity effects in the planetary boundary layer[J]. Boundary-Layer Meteorology, 2014, 150(1): 1-31.
73 MOENG C H, SULLIVAN P P. A comparison of shear- and buoyancy-driven planetary boundary layer flows[J]. Journal of the Atmospheric Sciences, 1994, 51(7): 999-1 022.
74 MARONGA B, RAASCH S. Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment[J]. Boundary-Layer Meteorology, 2013, 146(1): 17-44.
75 TANAKA H, HIYAMA T, YAMAMOTO K, et al. Surface flux and atmospheric boundary layer observations from the LAPS project over the middle stream of the Huaihe River Basin in China[J]. Hydrological Processes, 2007, 21(15): 1 997-2 008.
76 ZHANG Q, ZHANG J, QIAO J, et al. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China[J]. Science China Earth Sciences, 2011, 54(10): 1 586-1 594.
77 KING J C, ARGENTINI S A, ANDERSON P S. Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley Stations, Antarctica[J]. Journal of Geophysical Research, 2006, 111(D2). DOI:10.1029/2005JD006130 .
78 ZHANG Qiang, QIAO Liang, YUE Ping, et al. The energy mechanism controlling the continuous development of a super-thick atmospheric convective boundary layer during continuous summer sunny periods in an arid area[J]. Chinese Science Bulletin, 2019, 64(15): 1 637-1 650.
张强, 乔梁, 岳平, 等. 干旱区夏季晴空期超厚对流边界层发展的能量机制[J]. 科学通报, 2019, 64(15): 1 637-1 650.
79 SANTANELLO J A, FRIEDL M A, KUSTAS W P. An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface[J]. Journal of Applied Meteorology, 2005, 44(6): 917-932.
80 GUO J P, LI Y, COHEN J B, et al. Shift in the temporal trend of boundary layer height in China using long-term (1979-2016) radiosonde data[J]. Geophysical Research Letters, 2019, 46(11): 6 080-6 089.
81 ALLABAKASH S, LIM S. Climatology of planetary boundary layer height-controlling meteorological parameters over the Korean peninsula[J]. Remote Sensing, 2020, 12(16). DOI:10.3390/rs12162571 .
82 MAHMOOD R, LEEPER R, QUINTANAR A I. Sensitivity of planetary boundary layer atmosphere to historical and future changes of land use/land cover, vegetation fraction, and soil moisture in Western Kentucky, USA[J]. Global and Planetary Change, 2011, 78(1/2): 36-53.
83 ZHOU X, GEERTS B. The influence of soil moisture on the planetary boundary layer and on cumulus convection over an isolated mountain. part I: observations[J]. Monthly Weather Review, 2013, 141(3): 1 061-1 078.
84 DIRMEYER P A, WANG Z Y, MBUH M J, et al. Intensified land surface control on boundary layer growth in a changing climate[J]. Geophysical Research Letters, 2014, 41(4): 1 290-1 294.
85 PAPANGELIS G, TOMBROU M, KALOGIROS J. The Saharan convective boundary layer structure over large scale surface heterogeneity: a large eddy simulation study[J]. Atmospheric Research, 2021, 248. DOI:10.1016/j.atmosres.2020.105250 .
86 MARSHAM J H, PARKER D J, GRAMS C M, et al. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J]. Atmospheric Chemistry and Physics, 2008, 8(23): 6 979-6 993.
87 HUANG Q, MARSHAM J H, PARKER D J, et al. Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer[J]. Journal of Geophysical Research, 2010, 115(D5). DOI: 10.1029/2009JD012689 .
88 MA M J, PU Z X, WANG S G, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J]. Boundary-Layer Meteorology, 2011, 140(1): 163-176.
89 BIANCO L, DJALALOVA I V, KING C W, et al. Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s central valley[J]. Boundary-Layer Meteorology, 2011, 140(3): 491-511.
90 YANG Yang, LIU Xiaoyang, LU Zhenghui, et al. Study on depth of atmospheric boundary layerin Gobi Desert regions of the Bosten Lake basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 829-836.
杨洋, 刘晓阳, 陆征辉, 等. 博斯腾湖流域戈壁地区大气边界层高度特征研究[J]. 北京大学学报(自然科学版), 2016, 52(5): 829-836.
91 SHENG Peixuan, MAO Jietai, LI Jianguo. Atmospheric physics[M]. 2nd ed. Beijing: Peking University Press, 2013.
盛裴轩, 毛节泰, 李建国. 大气物理学[M]. 第2版. 北京: 北京大学出版社, 2013.
92 DORAN J C, ZHONG S. Variations in mixed-layer depths arising from inhomogeneous surface conditions[J]. Journal of Climate, 1995, 8(8): 1 965-1 973.
93 YI C X, DAVIS K J, BERGER B W, et al. Long-term observations of the dynamics of the continental planetary boundary layer[J]. Journal of the Atmospheric Sciences, 2001, 58(10): 1 288-1 299.
94 MIROCHA J D, KOSOVIĆ B. A large-eddy simulation study of the influence of subsidence on the stably stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 2010, 134(1): 1-21.
95 ZHAO Jianhua, ZHANG Qiang, WANG Sheng. A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China[J]. Acta Meteorologica Sinica, 2011, 69(6): 1 029-1 037.
赵建华, 张强, 王胜. 西北干旱区对流边界层发展的热力机制模拟研究[J]. 气象学报, 2011, 69(6): 1 029-1 037.
96 HAN B, ZHAO C L, LÜ S H, et al. A diagnostic analysis on the effect of the residual layer in convective boundary layer development near Mongolia using 20th century reanalysis data[J]. Advances in Atmospheric Sciences, 2015, 32(6): 807-820.
97 ZHANG L, ZHANG H S, LI Q H, et al. Turbulent mechanisms for the deep convective boundary layer in the Taklimakan Desert[J]. Geophysical Research Letters, 2022, 49(15). DOI: 10.1029/2022GL099447 .
98 SEIDEL D J, ZHANG Y H, BELJAARS A, et al. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D17). DOI: 10.1029/2012JD018143 .
99 MONKS P S, GRANIER C, FUZZI S, et al. Atmospheric composition change-global and regional air quality[J]. Atmospheric Environment, 2009, 43(33): 5 268-5 350.
100 JIANG Y Y, XIN J Y, WANG Y, et al. The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing[J]. Atmospheric Chemistry and Physics, 2021, 21(8): 6 111-6 128.
101 ENDO S, SHINODA T, HIYAMA T, et al. Characteristics of vertical circulation in the convective boundary layer over the Huaihe River Basin in China in the early summer of 2004[J]. Journal of Applied Meteorology and Climatology, 2008, 47(11): 2 911-2 928.
102 SANDEEP A, rad NARAYANA T, RAMKIRAN C N, et al. Differences in atmospheric boundary-layer characteristics between wet and dry episodes of the Indian summer monsoon[J]. Boundary-Layer Meteorology, 2014, 153(2): 217-236.
103 CHANDRA S, SRIVASTAVA N, KUMAR M. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season[J]. Meteorology and Atmospheric Physics, 2019, 131(4): 765-773.
104 WHITEMAN C D. Mountain meteorology: fundamentals and applications [M]. Oxford: Oxford University Press, 2000.
105 WHITEMAN C D. Observations of thermally developed wind systems in mountainous terrain[M]// Atmospheric processes over complex terrain. Boston, MA: American Meteorological Society, 1990: 5-42.
106 NYEKI S, KALBERER M, COLBECK I, et al. Convective boundary layer evolution to 4 km Asl over High-alpine terrain: airborne lidar observations in the Alps[J]. Geophysical Research Letters, 2000, 27(5): 689-692.
107 ROTACH M W, ZARDI D. On the boundary-layer structure over highly complex terrain: key findings from MAP[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 937-948.
108 YU Jingjing, LIU Yimin, LI Xiaofeng. Connections between the dominant modes of westerly over the upstream region of Qinghai- Xizang Plateau and the regional precipitation of China and NAO in winter[J]. Plateau Meteorology, 2014, 33(4): 877-886.
宇婧婧, 刘屹岷, 李晓峰. 冬季青藏高原上游西风模态与中国降水及NAO的关联[J]. 高原气象, 2014, 33(4): 877-886.
109 YAO Huiru, LI Dongliang. The relationship between Asian jets and the winter monsoon and their impact on climate in China[J]. Acta Meteorologica Sinica, 2013, 71(3): 429-439.
姚慧茹, 李栋梁. 亚洲急流与冬季风的关系及其对中国气候的影响[J]. 气象学报, 2013, 71(3): 429-439.
110 LAI Y, CHEN X L, MA Y M, et al. Impacts of the westerlies on planetary boundary layer growth over a valley on the north side of the central Himalayas[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(3). DOI: 10.1029/2020JD033928 .
[1] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[2] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[3] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[4] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[5] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[6] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[7] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[8] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[9] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[10] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[11] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[12] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[13] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[14] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[15] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
阅读次数
全文


摘要