地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 429 -440. doi: 10.11867/j.issn.1001-8166.2023.010

上一篇    

基于负表皮层影响的径向溶质运移模型构建与新求解方法
张开鑫 1( ), 黄璟胜 1 , 2( ), 王晨 1, 童晨晨 1, 王子成 1   
  1. 1.河海大学水文水资源学院,江苏 南京 210098
    2.河海大学长江保护 与绿色发展研究院,江苏 南京 210098
  • 收稿日期:2022-10-05 修回日期:2023-01-07 出版日期:2023-04-04
  • 通讯作者: 黄璟胜 E-mail:zkx_0111@qq.com;cshuang0318@hhu.edu.cn
  • 基金资助:
    国家自然科学基金项目“耦合大—小尺度介质地下水流的滞后理论”(52079042);“淮河流域遥感土壤水分数据产品验证及暴雨洪水数据同化系统构建”(41830752)

A New Analytical Method for Modeling Radially Divergent Solute Transport in Two-zone Confined Aquifers with Negative Skin Effects

Kaixin ZHANG 1( ), Ching-Sheng HUANG 1 , 2( ), Chen WANG 1, Chenchen TONG 1, Zicheng WANG 1   

  1. 1.College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
    2.Yangtze Institution for Conservation and Development, Hohai University, Nanjing 210098, China
  • Received:2022-10-05 Revised:2023-01-07 Online:2023-04-04 Published:2023-04-18
  • Contact: Ching-Sheng HUANG E-mail:zkx_0111@qq.com;cshuang0318@hhu.edu.cn
  • About author:ZHANG Kaixin (1998-), female, Lianyungang City, Jiangsu Province, Master student. Research areas include groundwater mechanism and numerical simulation. E-mail: zkx_0111@qq.com
  • Supported by:
    the National Natural Science Foundation of China “The lagging theory coupling groundwater flows in large- and small-scale media”(52079042);“Verification of remote sensing soil moisture data products and construction of rainstorm and flood data assimilation system in the huaihe river basin”(41830752)

对于模拟示踪试验的溶质运移,传统方法采用细网格离散小尺度表皮层,存在网格数量多和计算时间长等问题。由于表皮层外缘的参数变化剧烈,即使采用细网格,仍然存在显著误差。因此发展基于完整井的新示踪试验溶质运移模型,提出新的瞬态Robin边界条件反映表皮层吸附/解吸溶质的影响,实现表皮层的无网格。应用拉普拉斯变换导出模型的解析解,通过有限元法建立基于非完整井的数值解。结果显示新瞬态Robin边界条件精准反映负表皮层的影响。对于求解反演问题,表皮层宽度的估计范围由0.45~0.54 m缩至0.47~0.48 m,纵向弥散度由0.6~10.0 m缩至6.4~7.7 m,参数估计的可靠度显著提升。表皮层的无网格节省97%的数值解计算时间。

Various models have been developed for radially divergent tracer tests in two-zone confined aquifers of the skin and formation zones. However, existing numerical solutions require considerable computing time because of the fine spatial discretization of skins. The abrupt change in parameters near the skin-formation interface produces significant errors while predicting the spatiotemporal concentration near the interface, despite fine spatial discretization. In this study, a new model was developed for conducting radially divergent tracer tests in a partially penetrating well in a two-zone-confined aquifer. The skin was treated as a new transient Robin boundary condition specified at the skin-formation interface to reflect the effect of solute adsorption/release in the skin and achieve no skin discretization. A finite element solution for the model was developed. The analytical solution of the model modified for full penetration of the well was developed using the Laplace transform. These results suggest that the transient Robin boundary condition leads to accurate concentration predictions affected by negative skin. The analytical solution predicts reliable ranges of 0.47~0.48 m for the skin width w and 6.4~7.7 m for the longitudinal dispersivity α l ' , whereas a traditional solution exhibits a range of 0.45 m≤w≤0.54 m and 0.6 m≤ α l ' ≤10 m. The finite element solution required only 3% of the computing time for obtaining a finite element solution based on fine skin discretization. In conclusion, this study provides implications not only for theoretical advances but also for useful numerical methods.

中图分类号: 

图1 基于小尺度表皮层和大尺度含水层的承压含水层示踪试验及网格离散的示意图
Fig. 1 Schematic diagram of radially divergent tracer tests at a partially-penetrating well in a two-zone confined aquifer of small-scale skin and large-scale formation zones
图2 不同无量纲负表皮层宽度影响下的无量纲浓度时空分布
Fig. 2 Spatiotemporal distributions of the dimensionless concentration for different dimensionless widths of negative skins
图3 穿透曲线对每个参数变化的标准化敏感系数时域分布
(a)新单区解析解;(b)双区解析解
Fig. 3 Temporal normalized sensitivity coefficient for breakthrough curve to the change in each parameter plotted
(a) The single-zone analytical solution; (b) The two-zone analytical solution
图4 不同负表皮层迟滞因子影响下的无量纲浓度时空分布
Fig. 4 Spatiotemporal distributions of the dimensionless concentration for different skin retardation factors
图5 穿透曲线对每个参数变化的标准化敏感系数时域分布
(a)新单区解析解;(b)双区解析解
Fig. 5 Temporal normalized sensitivity coefficient for breakthrough curve to the change in each parameter plotted
(a) The single-zone analytical solution; (b) The two-zone analytical solution
图6 网格分辨率对新单区数值解和双区数值解的精度和效率的影响
Fig. 6 Influence of grid resolutions on the accuracy and efficiency of the single-zone and two-zone numerical solutions
图7 完整井和非完整井案例的无量纲浓度时空分布
Fig. 7 Spatiotemporal distributions of the dimensionless concentration for the cases of the fully-penetrating and partially-penetrating wells
图8 穿透曲线对每个参数变化的标准化敏感系数时域分布
(a)修改的解析解;(b)新单区数值解
Fig. 8 Temporal normalized sensitivity coefficient for breakthrough curve to the change in each parameter plotted
(a) The modified single-zone analytical solution; (b) The single-zone numerical solution
图9 新单区解析解与穿透曲线噪声数据的拟合
(a)~(b)穿透曲线标准化敏感系数的时域分布;(c)~(d)表皮层参数的标准误差等值线
Fig. 9 Curve fitting between the single-zone analytical solution and noisy data of breakthrough curve
(a)~(b) Temporal normalized sensitivity coefficients for breakthrough curves to each parameter;(c)~(d) Contour of standard error of estimate for skin parameters
1 CAO Tianzheng, HAN Dongmei, SONG Xianfang, et al. Bibliometric analysis of research progress on coastal surface water and groundwater interaction[J]. Advances in Earth Science, 2020, 35(2): 154-166.
曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
2 TU Mengzhao, LIU Zhifeng, HE Chunyang, et al. Research progress of groundwater storage changes monitoring in China based on GRACE satellite data[J]. Advances in Earth Science, 2020, 35(6): 643-656.
涂梦昭, 刘志锋, 何春阳, 等. 基于GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
3 HUANG Wanbin, YAN Chunhua, ZHANG Xiaonan, et al. The impact of urbanization on groundwater quantity, quality, hydrothermal changes and its countermeasures[J]. Advances in Earth Science, 2020, 35(5): 497-512.
黄婉彬, 鄢春华, 张晓楠, 等. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
4 LAI K H, LIU C W, LIANG C P, et al. A novel method for analytically solving a radial advection-dispersion equation[J]. Journal of Hydrology, 2016, 542: 532-540.
5 NOVAKOWSKI K S. A composite analytical model for analysis of pumping tests affected by well bore storage and finite thickness skin[J]. Water Resources Research, 1989, 25(9): 1 937-1 946.
6 YOUNG S C. Impacts of positive skin effects on borehole flowmeter tests in a heterogeneous granular aquifer[J]. Ground Water, 1998, 36(1): 67-75.
7 KIM B W. Effect of filter designs on hydraulic properties and well efficiency[J]. Ground Water, 2014, 52(): 175-185.
8 CHITALE A A, STEIN M H, ARIAS B J, et al. A new methodology to safely produce sand-controlled wells with increasing skin[J]. SPE Production & Operations, 2010, 25(4): 423-430.
9 van BEEK C G E M, BREEDVELD R M, JUHÁSZ-HOLTERMAN M, et al. Cause and prevention of well bore clogging by particles[J]. Hydrogeology Journal, 2009, 17(8): 1 877-1 886.
10 OLIVEIRA M A, VAZ A S L, SIQUEIRA F D, et al. Slow migration of mobilised fines during flow in reservoir rocks: laboratory study[J]. Journal of Petroleum Science and Engineering, 2014, 122: 534-541.
11 WILSON M J, WILSON L, PATEY I. The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights[J]. Clay Minerals, 2014, 49(2): 147-164.
12 HOUBEN G J, HALISCH M, KAUFHOLD S, et al. Analysis of wellbore skin samples-typology, composition, and hydraulic properties[J]. Ground Water, 2016, 54(5): 634-645.
13 BARDENHAGEN I. Skin localization at wells drilled in a vertical fault zone[J]. Ground Water, 1999, 37(5): 764-769.
14 GUO J C, XIAO Y, WANG H. Stimulation for minimizing the total skin factor in carbonate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 326-331.
15 CHEN C S. Analytical solutions for radial dispersion with cauchy boundary at injection well[J]. Water Resources Research, 1987, 23(7): 1 217-1 224.
16 YEH H D, YEH G T. Analysis of point-source and boundary-source solutions of one-dimensional groundwater transport equation[J]. Journal of Environmental Engineering, 2007, 133(11): 1 032-1 041.
17 HOOPES J A, HARLEMAN D R F. Dispersion in radial flow from a recharge well[J]. Journal of Geophysical Research, 1967, 72(14): 3 595-3 607.
18 CHEN Y J, YEH H D, CHANG K J. A mathematical solution and analysis of contaminant transport in a radial two-zone confined aquifer[J]. Journal of Contaminant Hydrology, 2012, 138: 75-82.
19 HSIEH P F, YEH H D. Semi-analytical and approximate solutions for contaminant transport from an injection well in a two-zone confined aquifer system[J]. Journal of Hydrology, 2014, 519: 1 171-1 176.
20 HVILSHØJ S, JENSEN K H, BARLEBO H C, et al. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization[J]. Hydrogeology Journal, 1999, 7(4): 365-379.
21 GU Haochen, WANG Quanrong, ZHAN Hongbing. An improved approach in modeling injection-withdraw test of the partially penetrating well[J]. Earth Science, 2020, 45(2): 685-692.
顾昊琛, 王全荣, 詹红兵. 非完整井下单井注抽试验数值模拟方法改进[J]. 地球科学, 2020, 45(2): 685-692.
22 CHEN Y, WANG Q R. The effect of boundary conditions on the single-well push-pull test in a partially penetrated well[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127035 .
23 CARNIATO L, SCHOUPS G, van de GIESEN N, et al. Highly parameterized inversion of groundwater reactive transport for a complex field site[J]. Journal of Contaminant Hydrology, 2015, 173: 38-58.
24 QIN R G, WU Y Q, XU Z G, et al. Numerical modeling of contaminant transport in a stratified heterogeneous aquifer with dipping anisotropy[J]. Hydrogeology Journal, 2013, 21(6): 1 235-1 246.
25 WANG Q R, ZHAN H B. Radial reactive solute transport in an aquifer-aquitard system[J]. Advances in Water Resources, 2013, 61: 51-61.
26 ZHAN H B, WEN Z, HUANG G H, et al. Analytical solution of two-dimensional solute transport in an aquifer-aquitard system[J]. Journal of Contaminant Hydrology, 2009, 107(3/4): 162-174.
27 WANG C, HUANG C S, TONG C C, et al. A low-cost model for slug tests in a confined aquifer with skin-zone effect[J]. Journal of Hydrology, 2022, 612. DOI:10.1016/j.jhydrol.2022.128273 .
28 WANG Q R, ZHAN H B, WANG Y X. Single-well push-pull test in transient Forchheimer flow field[J]. Journal of Hydrology, 2017, 549: 125-132.
29 HUANG C S, YANG S Y, YEH H D. Technical note: approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer[J]. Hydrology and Earth System Sciences, 2015, 19(6): 2 639-2 647.
30 STEHFEST H. Algorithm 368: numerical inversion of Laplace transforms[D5][J]. Communications of the ACM, 1970, 13(1): 47-49.
31 WOLFRAM R. Mathematica, Version 11.0[Z]. Champaign, Illinois: Wolfram Research, Inc., 2016.
32 YANG Xi. Study on interpretation method of formation heterogeneity based on single well tracer[D]. Chengdu: Southwest Petroleum University, 2012.
杨曦. 基于单井示踪剂的地层非均质性解释方法研究[D]. 成都: 西南石油大学, 2012.
33 ZHENG C M, BENNETT G D. Applied contaminant transport modeling[M]. 2nd ed. New York: Wiley-Interscience, 2002.
[1] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
[2] 张光辉;聂振龙;王金哲;程旭学. 黑河流域水循环过程中地下水同位素特征及补给效应[J]. 地球科学进展, 2005, 20(5): 511-519.
[3] 薛传东,刘星,杨浩,李保珠,谈树成. 昆明市地热田越流含水系统中地下热水的数值模拟[J]. 地球科学进展, 2003, 18(6): 899-905.
[4] 张开鑫, 黄璟胜, 王晨, 童晨晨, 王子成. 基于负表皮层影响的径向溶质运移模型构建与新求解方法#br#[J]. 地球科学进展, 0, (): 1-.
阅读次数
全文


摘要