地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 401 -413. doi: 10.11867/j.issn.1001-8166.2023.014

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原水生态空间格局时空演化特征及驱动机制
薄立明 1( ), 魏伟 1 , 2( ), 赵浪 2, 尹力 2, 夏俊楠 2   
  1. 1.武汉大学中国发展战略与规划研究院,湖北 武汉 430072
    2.武汉大学城市设计学院,湖北 武汉 430072
  • 收稿日期:2022-11-30 修回日期:2023-02-20 出版日期:2023-04-04
  • 通讯作者: 魏伟 E-mail:boliming@whu.edu.cn;weiwei@whu.edu.cn
  • 基金资助:
    长江水利委员会长江科学院开放研究基金项目“基于高分影像的河湖岸线功能区及边界线监测与优化研究——以长江武汉段和洪湖为例”(CKWV2021864/KY)

Spatial and Temporal Evolution Characteristics and the Driving Mechanism of Water Eco-Space in the Tibetan Plateau

Liming BO 1( ), Wei WEI 1 , 2( ), Lang ZHAO 2, Li YIN 2, Junnan XIA 2   

  1. 1.China Institute of Development Strategy and Planning, Wuhan University, Wuhan 430072, China
    2.School of Urban Design, Wuhan University, Wuhan 430072, China
  • Received:2022-11-30 Revised:2023-02-20 Online:2023-04-04 Published:2023-04-18
  • Contact: Wei WEI E-mail:boliming@whu.edu.cn;weiwei@whu.edu.cn
  • About author:BO Liming (1982-), male, Linyi City, Shandong Province, Associate professor. Research area includes territorial spatial planning. E-mail: boliming@whu.edu.cn
  • Supported by:
    the Changjiang River Scientific Research Institute Open Research Program “Monitoring and classification optimizing research of boundary and functional area for river and lake based on high-resolution remote sensing images—a case study of Wuhan Section of Yangtze River and Honghu Lake”(CKWV2021864/KY)

科学认知青藏高原水生态空间时空演化过程与驱动因素,是筑牢“亚洲水塔”和实现地区“人―水资源―生态”协调可持续发展的迫切需求。采用空间转换矩阵和地理探测器等方法研究了2000―2020年青藏高原水生态空间的演化特征与驱动机制,结果表明: 近20年青藏高原水生态空间规模不断增加,增幅达21.53%,横断山西北侧,位于西藏、青海、四川和云南4省交汇处的“青海省果洛州达日县―西藏自治区林芝市察隅县”一线两侧地区增幅最为显著; 其他生态空间向水生态空间的转化是主导变化类型,气候变暖和人为活动影响使冰川和积雪蓄水流向河流湖泊,使青藏高原水资源呈“液态化”且水生态空间向东蔓延; 青藏高原地区水生态空间的演化受政策工程、自然地理、交通区位和社会经济等多方面因子的共同驱动,各类型因子整体呈现出非线性增强的交互驱动作用,其中自然地理类和交通区位类因子的作用强度q值平均水平远大于其他因子,是青藏高原水生态空间演化的主导驱动因素。

A scientific understanding of the spatio-temporal evolution process and driving factors of water ecological space in the Tibetan Plateau is an urgent requirement to build the “Asian water tower” and establish the coordinated and sustainable development of human-water resources-ecology in the region. In this study, a spatial transformation matrix, spatial correlation analysis, and geographical detector were used to determine the evolutionary characteristics and driving mechanisms of the aquatic ecological space in the Tibetan Plateau from 2000–2020. The following results were obtained: During the past 20 years, the aquatic ecological space in the Tibetan Plateau has increased by 21.53%. The northwest side of the Hengduan Mountains, the intersection of Tibet and the Qinghai, Sichuan, and Yunnan provinces, “Dari County, Guoluo Prefecture, Qinghai Province-Chayu County, Linzhi City, Tibet Autonomous Region,” had the most significant increase. The transformation from other ecological space to water ecological space is the dominant change type, and climate warming and human influence have caused glaciers and snowmelt to flow into rivers and lakes. Therefore, water resources in the Tibetan Plateau have melted and water ecological space have been extended eastward. The evolution of water ecological space in the Tibetan Plateau is jointly driven by many factors, such as policy engineering, natural geography, traffic location, and social economy. Each type of factor had a nonlinearly enhanced interactive driving effect as a whole; this caused the average value of the action intensity q of natural geography and traffic location to be far greater than that of other factors, which is the dominant driving factor for the evolution of the water ecological space in the Tibetan Plateau.

中图分类号: 

图1 青藏高原水生态空间及城镇现状
Fig. 1 Water eco-space and urban status map of Tibetan Plateau
图2 20002020年青藏高原水生态空间时空分布格局及变化强度
Fig. 2 Spatial-temporal distribution pattern and variation intensity of water eco-space in the Tibetan Plateau from 2000 to 2020
表1 20002020年青藏高原水生态空间数据
Table 1 Water eco-space data of Tibetan Plateau from 2000 to 2020
图3 20002020年青藏高原水生态空间交叉转换情况
Fig. 3 Spatial cross-conversion map of water eco-space in Tibetan Plateau from 2000 to 2020
表2 20002020年青藏高原水生态空间交叉转换规模 (km 2)
Table 2 Cross conversion of water eco-space in Tibetan Plateau from 2000 to 2020
图4 青藏高原水生态空间交叉转换的影响因子贡献率
Fig. 4 Contribution rate of influencing factors on crossover of water eco-space in Tibetan Plateau
图5 青藏高原水生态空间交叉转换的政策—地理—交通—经济因子交互作用
Fig. 5 The interactions among policygeographytransportation and economic factors on the cross-transformation of water eco-space in Tibetan Plateau
1 YAO Tandong, CHEN Fahu, CUI Peng,et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences,2017,32(9):924-931.
姚檀栋,陈发虎,崔鹏,等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊,2017,32(9):924-931.
2 XU Xiangde, DONG Lili, ZHAO Yang,et al. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J]. Chinese Science Bulletin,2019,64(27):2 830-2 841.
徐祥德,董李丽,赵阳,等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报,2019,64(27):2 830-2 841.
3 SUN Honglie, ZHENG Du, YAO Tandong,et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica,2012,67(1):3-12.
孙鸿烈,郑度,姚檀栋,等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报,2012,67(1):3-12.
4 ZHAO Zhilong, ZHANG Yili, LIU Linshan,et al. Advances in research on wetlands of the Tibetan Plateau[J]. Progress in Geography,2014,33(9):1 218-1 230.
赵志龙,张镱锂,刘林山,等. 青藏高原湿地研究进展[J]. 地理科学进展,2014,33(9):1 218-1 230.
5 WANG Ninglian, YAO Tandong, XU Baiqing,et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences,2019,34(11):1 220-1 232.
王宁练,姚檀栋,徐柏青,等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊,2019,34(11):1 220-1 232.
6 YANG Yaoxian, HU Zeyong, LU Fuquan,et al. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology,2022,41(1):1-10.
杨耀先,胡泽勇,路富全,等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象,2022,41(1):1-10.
7 LIU Fei, LIU Fenggui, ZHOU Qiang,et al. Ecological risk and regional differentiation in the Qinghai-Tibet Plateau[J]. Journal of Natural Resources,2021,36(12):3 232-3 246.
刘飞,刘峰贵,周强,等. 青藏高原生态风险及区域分异[J]. 自然资源学报,2021,36(12):3 232-3 246.
8 YAO Tandong. A comprehensive study of water-ecosystem-human activities reveals unbalancing Asian Water Tower and accompanying potential risks[J]. Chinese Science Bulletin,2019,64(27):2 761-2 762.
姚檀栋. 青藏高原水—生态—人类活动考察研究揭示“亚洲水塔”的失衡及其各种潜在风险[J]. 科学通报,2019,64(27):2 761-2 762.
9 YAO Tandong, WU Guangjian, XU Baiqing,et al. Asian Water Tower change and its impacts[J]. Bulletion of the Chinese Academy of Sciences, 2019,34(11):1 203-1 209.
姚檀栋,邬光剑,徐柏青,等. “亚洲水塔”变化与影响[J]. 中国科学院院刊,2019,34(11):1 203-1 209.
10 WANG Ting. A bibliometric analysis of international research on Tibetan Plateau: based on the databases of SCIE and ESI[J]. Progress in Geography, 2017,36(4):500-512.
王婷. 2009—2015年国际青藏高原研究文献计量分析——基于SCIE和ESI数据[J]. 地理科学进展,2017,36(4):500-512.
11 NIU Fujun, WANG Wei, LIN Zhanju,et al. Study on environmental and hydrological effects of thermokarst lakes in perma frost regions of the Qinghai-Tibet Plateau[J]. Advances in Earth Science,2018,33(4):335-342.
牛富俊,王玮,林战举,等. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展,2018,33(4):335-342.
12 FAN Keke, ZHANG Qiang, SUN Peng,et al. Variation,causes and future estimation of surface soil moisture on the Tibetan Plateau[J]. Acta Geographica Sinica,2019,74(3):520-533.
范科科,张强,孙鹏,等. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报,2019,74(3):520-533.
13 WANG Jinsong, YAO Yubi, WANG Ying,et al. Meteorological droughts in the Qinghai-Tibet Plateau:research progress and prospects[J]. Advances in Earth Science,2022,37(5):441-461.
王劲松,姚玉璧,王莺,等. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展,2022,37(5):441-461.
14 GENG Xiaodong, XU Ri, LIU Yongwen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China[J]. Chinese Journal of Plant Ecology,2018,42(3):397-405.
耿晓东,旭日,刘永稳. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应[J]. 植物生态学报,2018,42(3):397-405.
15 YANG Ting, CHEN Xiuwan, WAN Wei,et al. Soil moisture retrieval in the Tibetan Plateau using optical and passive microwave remote sensing data[J]. Chinese Journal of Geophysics,2017,60(7):2 556-2 567.
杨婷,陈秀万,万玮,等. 基于光学与被动微波遥感的青藏高原地区土壤水分反演[J]. 地球物理学报,2017,60(7):2 556-2 567.
16 LI Wentao, LI Xingyu, ZHANG Lilin,et al. Climatic characteristic analysis of cloud water over the Tibetan Plateau[J]. Climatic and Environmental Research,2018,23(5):574-586.
李文韬,李兴宇,张礼林,等. 青藏高原云水气候特征分析[J]. 气候与环境研究,2018,23(5):574-586.
17 TIAN Yuan, YU Chengqun, ZHA Xinjie,et al. Hydrochemical characteristics and factors controlling of natural water in the western, southern, and northeastern border areas of the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica,2019,74(5):975-991.
田原,余成群,查欣洁,等. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因[J]. 地理学报,2019,74(5):975-991.
18 YAO Tianci, LU Hongwei, YU Qing,et al. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science,2020,35(5):534-546.
姚天次,卢宏玮,于庆,等. 近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展,2020,35(5):534-546.
19 DING Mingjun, ZHANG Yili, LIU Linshan,et al. Seasonal time lag response of NDVI to temperature and precipitation change and its spatial characteristics in Tibetan Plateau[J]. Progress in Geography,2010,29(4):507-512.
丁明军,张镱锂,刘林山,等. 青藏高原植被覆盖对水热条件年内变化的响应及其空间特征[J]. 地理科学进展,2010,29(4):507-512.
20 YUAN Jianxin, YI Zhijian, WANG Shouyu. Geological challenges in construction of hydropower projects in Qinghai-Tibet Plateau and its surrounding areas[J]. Journal of Engineering Geology,2016,24(5):847-855.
袁建新,易志坚,王寿宇. 青藏高原及其周边地区水电工程建设中的地质挑战[J]. 工程地质学报,2016,24(5):847-855.
21 MA Weidong, LIU Fenggui, ZHOU Qiang,et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources,2020,35(12):3 039-3 050.
马伟东,刘峰贵,周强,等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报,2020,35(12):3 039-3 050.
22 LONG Di, LI Xueying, LI Xingdong,et al. Remote sensing retrieval of water storage changes and underlying climatic mechanisms over the Tibetan Plateau during 2000—2020[J]. Advances in Water Science,2022,33(3):375-389.
龙笛,李雪莹,李兴东,等. 遥感反演2000—2020年青藏高原水储量变化及其驱动机制[J]. 水科学进展,2022,33(3):375-389.
23 LIU Zhiqi, PAN Baozhu, HAN Xu,et al. Water environmental characteristics and water quality assessment of lakes in Tibetan Plateau[J]. Environmental Science,2022,43(11):5 073-5 083.
刘智琦,潘保柱,韩谞,等. 青藏高原湖泊水环境特征及水质评价[J]. 环境科学,2022,43(11):5 073-5 083.
24 SHUI Yanping, LU Huiting, WANG Huifang,et al. Assessment of habitat quality on the basis of land cover and NDVI changes in Lhasa River Basin[J]. Acta Ecologica Sinica,2018,38(24):8 946-8 954.
税燕萍,卢慧婷,王慧芳,等. 基于土地覆盖和NDVI变化的拉萨河流域生境质量评估[J]. 生态学报,2018,38(24):8 946-8 954.
25 ZHANG Guoqing. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations[J]. Progress in Geography,2018,37(2):214-223.
张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展,2018,7(2):214-223.
26 ZHONG Jun, LI Siliang, LI Zheng,et al. Influence of geothermal activities on river water and carbon transport in the eastern margin of Qinghai-Tibet Plateau[J]. Scientia Sinica Terrae,2022,52(5):932-941.
钟君,李思亮,李铮,等. 青藏高原东缘地热活动对河流水、碳输送影响[J]. 中国科学:地球科学,2022,52(5):932-941.
27 GUO Jianping, LIU Huan, AN Linchang,et al. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001-2012[J]. Plateau Meteorology,2016,35(1):24-33.
郭建平,刘欢,安林昌,等. 2001—2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象,2016,35(1):24-33.
28 GAO Qing, MIAO Yi, SONG Jinping,et al. Research progress on the sustainable development of Qinghai-Tibet Plateau[J]. Geographical Research,2021,40(1):1-17.
高卿,苗毅,宋金平. 青藏高原可持续发展研究进展[J]. 地理研究,2021,40(1):1-17.
29 FENG Yuxue, LI Guangdong. Interaction between urbanization and eco-environment in Tibetan Plateau[J]. Acta Geographica Sinica,2020,75(7):1 386-1 405.
冯雨雪,李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报,2020,75(7):1 386-1 405.
30 SUN Siao, WANG Jing, QI Wei. Urban-and-rural virtual water trade of Qinghai-Tibet Plateau: patterns and influencing factors[J]. Acta Geographica Sinica,2020,75(7):1 346-1 358.
孙思奥,王晶,戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报,2020,75(7):1 346-1 358.
31 LIU Yujie, Shuo LÜ, CHEN Jie,et al. Spatio-temporal differentiation of agricultural modernization and its driving mechanism on the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica,2022,77(1):214-227.
刘玉洁,吕硕,陈洁,等. 青藏高原农业现代化时空分异及其驱动机制[J]. 地理学报,2022,77(1):214-227.
32 WANG Li, ZHANG Yili, WANG Zhaofeng,et al. Effects of grazing and hydrological disturbance on soil properties of wet meadow wetland in Lhasa[J]. Research of Soil and Water Conservation,2013,20(1):66-69.
王丽,张镱锂,王兆锋,等. 放牧及水文扰动对拉萨地区湿草甸湿地土壤特征的影响[J]. 水土保持研究,2013,20(1):66-69.
33 LIU Lanhua, LI Yaozeng, KANG Fengfeng. Preliminary study on eco-recovery technology of railway construction in plateau region—taking Geermu-Tanggulashan part of the Qinghai-Tibet railway as an example[J]. Research of Soil and Water Conservation,2007(1):310-312.
刘兰华,李耀增,康锋锋. 高原地区铁路建设生态恢复技术初探——以青藏铁路格唐段为例[J]. 水土保持研究,2007(1):310-312.
34 YANG Qing, WANG Xiaohong, ZHANG Jianyong,et al. Planning based on spatial pattern of water ecology[J]. China Water Resources,2017(3):6-9.
杨晴,王晓红,张建永,等.水生态空间管控规划的探索[J].中国水利, 2017(3): 6-9.
35 ZHAO Lin, ZOU Defu, HU Guojie, et al. A synthesis dataset of permafrost thermal state for the Qinghai-Tibet (Xizang) Plateau, China[J]. Earth System Science Data, 2021,13(8):4 207-4 218.
36 BAI Bing, ZHAO Zuoquan, ZHANG Pei. Trends and layout of economic integration between north and south China[J]. Economic Geography, 2021, 41(2): 1-10.
白冰,赵作权,张佩. 中国南北区域经济空间融合发展的趋势与布局[J]. 经济地理,2021,41(2):1-10.
37 WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116-134.
王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.
[1] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[2] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[3] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[4] 叶传红, 栾锡武, 樊爱萍, 冉伟民, 穆敬轩, 何明勇, 魏新元, 李阳, 刘洁. 安达曼海东部台缘阶地中新世生物礁演化特征及其古环境响应[J]. 地球科学进展, 2022, 37(3): 316-330.
[5] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[6] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[7] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[8] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[9] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[10] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[11] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[12] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[13] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[14] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[15] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
阅读次数
全文


摘要