地球科学进展 ›› 2023, Vol. 38 ›› Issue (7): 745 -756. doi: 10.11867/j.issn.1001-8166.2023.037

研究论文 上一篇    下一篇

利用大地测量手段推算印度板块与欧亚板块初始碰撞时间
刘操 1( ), 饶维龙 2, 孙文科 1( )   
  1. 1.中国科学院大学地球与行星科学学院,北京 100049
    2.长沙理工大学交通 运输工程学院,湖南 长沙 410114
  • 收稿日期:2023-01-08 修回日期:2023-04-19 出版日期:2023-07-10
  • 通讯作者: 孙文科 E-mail:liucao20@mails.ucas.ac.cn;sunw@ucas.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“利用GRACE等多源数据研究天山地区多源质量迁移问题”(42174097);“利用重力卫星GRACE数据研究中国东海地区沉积质量变化”(41974093)

Estimation of the Initial Collision Time Between the Indian and Eurasian Plates Using Geodetic Means

Cao LIU 1( ), Weilong RAO 2, Wenke SUN 1( )   

  1. 1.College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
    2.School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2023-01-08 Revised:2023-04-19 Online:2023-07-10 Published:2023-07-19
  • Contact: Wenke SUN E-mail:liucao20@mails.ucas.ac.cn;sunw@ucas.ac.cn
  • About author:LIU Cao (1996-), male, Zaozhuang City, Shandong Province, Master student. Research area includes application research of satellite geodesy. E-mail: liucao20@mails.ucas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Study of multi-source mass migration in the Tianshan region using GRACE and other multi-source data”(42174097);“Study of sediment quality changes in the East China Sea region using gravity satellite GRACE data”(41974093)

印度板块与欧亚板块碰撞初始时间或者青藏高原的隆升时间是一个重要且一直存在较大争议的科学问题。到目前为止,主要通过地质学或地理学方法手段对该问题进行研究,基于此,试图通过现代大地测量学手段对该问题开展探索性研究。主要利用全球导航卫星系统观测位移场、地表质量迁移负荷改正以及CRUST1.0地壳模型等数据和资料,估算了青藏高原块体的隆升速率和地壳厚度增厚率,进而获得整个青藏高原块体的隆升起始点与隆升过程。在假设青藏高原块体是弹性块体和线性隆升的情况下,推算出印度板块与欧亚板块碰撞初始时间大约为83 Ma。通过探索性研究,为青藏高原块体隆升起始时间点问题提供了值得尝试的新的大地测量途径。

The initial time of collision of the Indian Plate with the Eurasian Plate, or the uplift time of the Tibetan Plateau, is an important and controversial scientific issue. Thus far, the main means of studying this problem have been geology or geography, and we have attempted to carry out exploratory research through modern geodesy. In this study, GNSS observations of the displacement field, surface mass migration load correction, hydrological model, CRUST1.0 model, and other data were used to estimate the uplift rate and thickness of the Tibetan Plateau block and then obtain the uplift starting point and uplift process of the entire Tibetan Plateau block. Finally, assuming that the Tibetan Plateau block was a linear uplift, we estimated that the initial time of the collision between the Indian and Eurasian Plates was 83 Ma. If the Tibetan Plateau underwent nonlinear uplifting, the initial collision time between the Indian and Eurasian Plates would be closer to the geological results. This study provides a new method to study the starting time of block uplift on the Tibetan Plateau.

中图分类号: 

图1 西藏地表高程变化的历史(据参考文献[ 21 ]修改)
Fig. 1 History of surface elevation changes in Tibetmodified after reference 21 ])
图2 青藏高原块体隆升机制
(a)青藏高原地壳增厚模式(据参考文献[ 30 ]修改);(b)青藏高原隆升机制的假设:印度板块与欧亚板块碰撞形成青藏高原并使其线性隆升
Fig. 2 Uplift mechanism of the Tibetan Plateau block
(a) Crustal thickening pattern of the Tibetan Plateau (modified after reference [ 30 ]); (b) Hypothesis of the uplift mechanism of the Tibetan Plateau: the Indian plate collided with the Eurasian plate to form the Tibetan Plateau and caused its linear uplift
图3 青藏高原地区地壳垂直位移场
研究结果由GNSS观测位移经负荷改正插值所得。(a)和(b)分别为GNSS-GRACE和GNSS-Hydrology使用克里金插值方法得到的青藏高原垂直位移场;(c)和(d)分别为IDW插值的结果
Fig. 3 Vertical displacement field of the crust in the Tibetan Plateau region
The results obtained by interpolation of GNSS observed displacements by load correction. (a) and (b) are the vertical displacement fields of the Tibetan Plateau obtained by GNSS-GRACE and GNSS-Hydrology using Kriging interpolation, respectively; (c) and (d) are the results of IDW interpolation, respectively
图4 根据 Airy-Heiskanen均衡模型计算得到的青藏高原莫霍面变化速率(使用克里金插值)
Fig. 4 Moho surface change rates on the Tibetan Plateau calculated according to the Airy-Heiskanen modelusing Kriging interpolation
图5 青藏高原地壳增厚率
(a)和(b)是基于GNSS-Hydrology位移得到的地壳厚度变化速率;(c)和(d)是基于GNSS-GRACE位移得到的地壳厚度变化速率
Fig. 5 Overall crustal rates of the Qinghai-Tibet Plateau
(a) and (b) are the crustal rates obtained from GNSS-Hydrology; (c) and (d) are the rates obtained from GNSS-GRACE
图6 印度板块与欧亚板块碰撞致使青藏高原网格点隆起的初始时间分布
(a)和(b)直接利用GNSS垂直速度计算的结果;(c)和(d)基于GRACE负荷改正的地壳增厚率计算的结果;(e)和(f)基于水文模型负荷改正的地壳增厚率计算的结果;(a)、(c)和(e)基于克里金插值方法,(b)、(d)和(f)基于反距离权重插值方法
Fig. 6 Initial time distribution of the uplift of the Tibetan Plateau due to the collision of the Indian plate with the Eurasian plate
(a) and (b) are calculated directly using GNSS vertical velocities; (c) and (d) are calculated using crustal vertical deformation rates corrected by GRACE; (e) and (f) are calculated using crustal vertical deformation rates corrected by hydrological methods, where (a) (c) (e) use the Kriging interpolation method and (b) (d) (f) use the IDW interpolation method
表1 印度板块与欧亚板块初始碰撞时间 (Ma)
Table 1 Time of initial collision of the Indian and Eurasian plates
1 YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28( 1): 211- 280.
2 ROWLEY D B. Age of initiation of collision between India and Asia: a review of stratigraphic data[J]. Earth and Planetary Science Letters, 1996, 145( 1/2/3/4): 1- 13.
3 TAPPONNIER P, MERCIER J L, PROUST F, et al. The Tibetan side of the India-Eurasia collision[J]. Nature, 1981, 294( 5 840): 405- 410.
4 ACHACHE J, COURTILLOT V, XIU Z Y. Paleogeographic and tectonic evolution of southern Tibet since Middle Cretaceous time: new paleomagnetic data and synthesis[J]. Journal of Geophysical Research: Solid Earth, 1984, 89( B12): 10 311- 10 339.
5 BESSE J, COURTILLOT V, POZZI J P, et al. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture[J]. Nature, 1984, 311( 5 987): 621- 626.
6 ALLÉGRE C J, COURTILLOT V, TAPPONNIER P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307( 5 946): 17- 22.
7 BECK R A, BURBANK D W, SERCOMBE W J, et al. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature, 1995, 373( 6 509): 55- 58.
8 NAJMAN Y, PRINGLE M, GODIN L, et al. Dating of the oldest continental sediments from the Himalayan foreland basin[J]. Nature, 2001, 410( 6 825): 194- 197.
9 DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in North Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455: 49- 61.
10 LEECH M L, SINGH S, JAIN A K, et al. The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 2005, 234( 1/2): 83- 97.
11 DING Lin, MAKSATBEK S, CAI Fulong, et al. Processes of initialc ollision and suturing between India and Asia[J]. Science China: Earth Sciences, 2017, 47( 3): 293- 309.
丁林, MAKSATBEK Satybaev, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学:地球科学, 2017, 47( 3): 293- 309.
12 DING Lin, ZHONG Dalai, YIN An, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa) [J]. Earth and Planetary Science Letters, 2001, 192( 3): 423- 438.
13 DING L, KAPP P, ZHONG D L, et al. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44( 10): 1 833- 1 865.
14 CHEN Junshan, HUANG Baochun, SUN Lisa. New constraints to the onset of the India-Asia collision: paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China[J]. Tectonophysics, 2010, 489( 1/2/3/4): 189- 209.
15 CAI Fu, DING Lin, YUE Yahui. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India-Asia collision [J]. Earth and Planetary Science Letters, 2011, 305( 1/2): 195- 206.
16 YI Zhiyu, HUANG Baochun, CHEN Junshan, et al. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: implications to onset of the India-Asia collision and size of Greater India[J]. Earth and Planetary Science Letters, 2011, 309( 1/2): 153- 165.
17 ZHANG Qinghai, WILLEMS H, DING Lin, et al. Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology[J]. The Journal of Geology, 2012, 120( 2): 175- 189.
18 WU F Y, WEI Q J, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014, 314( 2): 548- 579.
19 HU Xiumian, WANG Jiangang, BOUDAGHER-FADEL M, et al. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet [J]. Gondwana Research, 2016, 32: 76- 92.
20 ZHENG Du, YAO Tandong. Uplifting of Tibetan Plateau with its environmental effects[J]. Advances in Earth Science, 2006, 21( 5): 451- 458.
郑度, 姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21( 5): 451- 458.
21 DING Lin, KAPP P, CAI Fulong, et al. Timing and mechanisms of Tibetan Plateau uplift [J]. Nature Reviews Earth & Environment, 2022, 3( 10): 652- 667.
22 XU Caijun, CHAO Dingbo, TAO Benzao. The role and tasks of geodesy in geoscientific research on the Tibetan Plateau[J]. WTUSM Bulletin of Science and Technology, 1994( 4): 38- 42.
许才军, 晁定波, 陶本藻. 大地测量在青藏高原地学研究中的作用与任务[J]. 武测科技, 1994( 4): 38- 42.
23 DUAN Hurong, KANG Mingzhe, WU Shaoyu, et al. Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field[J]. Chinese Journal of Geophysics, 2020, 63( 12): 4 345- 4 360.
段虎荣, 康明哲, 吴绍宇, 等. 利用GRACE时变重力场反演青藏高原的隆升速率[J]. 地球物理学报, 2020, 63( 12): 4 345- 4 360.
24 WANG Qi, ZHANG Peizheng, FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements [J]. Science, 2001, 294 ( 5 542): 574- 577.
25 ZHENG Gang, WANG Hua, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements [J]. Journal of Geophysical Research: Solid Earth, 2017, 122( 11): 9 290- 9 312.
26 LIANG Shimin, GAN Weijun, SHEN Chuanzheng, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements [J]. Journal of Geophysical Research: Solid Earth, 2013, 118( 10): 5 722- 5 732.
27 PAN Yunjin, SHEN Wenbin, SHUM C K, et al. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data [J]. Earth and Planetary Science Letters, 2018, 502: 12- 22.
28 RAO Weilong, SUN Wenke. Moho interface changes beneath the Tibetan Plateau based on GRACE Data [J]. Journal of Geophysical Research: Solid Earth, 2021, 126( 2). DOI: 10.1029/2020JB0206 .
29 XU Caijun, HE Ping, WEN Yangmao, et al. Recent advances InSAR interferometry and its applications[J]. Journal of Geomatics, 2015, 40( 2): 1- 9.
许才军, 何平, 温扬茂, 等. InSAR技术及应用研究进展[J]. 测绘地理信息, 2015, 40( 2): 1- 9.
30 SUN Wenke, WANG Qi, LI Hui, et al. Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: geodetic evidence of increasing crustal thickness [J]. Geophysical Research Letters, 2009, 36( 2). DOI: 10.1029/2008GL036512 .
31 RAO Weilong, SUN Wenke. Uplift of the Tibetan Plateau: how to accurately compute the hydrological load effect?[J]. Journal of Geophysical Research: Solid Earth, 2022, 127( 1). DOI: 10.1029/2021JB022475 .
32 ZHU Liangfeng, PAN Xin, SUN Jianzhou. Visualization and dissemination of global crustal models on virtual globes [J]. Computers & Geosciences, 2016, 90: 34- 40.
33 JIANG Yongtao, ZHANG Yongzhi, WANG Shuai, et al. The lithospheric heterogenities of China mainland and neighborhood based on CRUST1.0 and its characteristics[J]. Journal of Geodesy and Geodynamics, 2014, 34( 6): 60- 65.
姜永涛, 张永志, 王帅, 等. 基于CRUST1.0的中国大陆及邻域岩石圈结构计算及特征分析[J]. 大地测量与地球动力学, 2014, 34( 6): 60- 65.
34 LI Jun, YOU Songcai, HUANG Jingfeng. Spatial interpolation method and spatial distribution characteristics of monthly mean temperature in China during 1961-2000[J]. Ecology and Environment, 2006( 1): 109- 114.
李军, 游松财, 黄敬峰. 中国1961—2000年月平均气温空间插值方法与空间分布[J]. 生态环境, 2006( 1): 109- 114.
35 CAI Fu, YU Guirui, ZHU Qinglin, et al. Comparison of precisions between spatial methods of climatic factors: a case study on mean air temperature[J]. Resources Science, 2005, 27( 5): 173- 179.
蔡福, 于贵瑞, 祝青林, 等. 气象要素空间化方法精度的比较研究: 以平均气温为例[J]. 资源科学, 2005, 27( 5): 173- 179.
36 LIU Zanwu, LU Zhonglian. Discussion on the isostatic earth model[J]. Acta Geodaetica et Cartographic Sinica, 1999, 28( 4): 308- 312.
刘缵武, 陆仲连. 关于地壳均衡模型的讨论[J]. 测绘学报, 1999, 28( 4): 308- 312.
37 WESTAWAY R. Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan Plateau: a working hypothesis[J]. Journal of Geophysical Research: Solid Earth, 1995, 100( B8): 15 173- 15 192.
38 MA Chao, LI Fei, ZHANG Shengkai, et al. Progress of Glacial Isostatic Adjustment (GIA) models[J]. Progress in Geophysics, 2016, 31( 5): 1 965- 1 972.
马超, 李斐, 张胜凯, 等. 冰川均衡调整(GIA)模型研究进展[J]. 地球物理学进展, 2016, 31( 5): 1 965- 1 972.
39 WANG Hansheng, PATRICK W U, XU Houze. A review of research in Glacial Isostatic Adjustment[J]. Progress in Geophysics, 2009, 24( 6): 1 958- 1 967.
汪汉胜, Patrick W U, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24( 6): 1 958- 1 967.
40 GEROU A, WAHR J, ZHONG S J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192( 2): 557- 572.
[1] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[2] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[3] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[4] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[5] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[6] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[7] 程惠红, 孙长青, 赵倩, 朱辉, 金子奇. 2022年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2022, 37(12): 1276-1285.
[8] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[9] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[10] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[11] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[12] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[13] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[14] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[15] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
阅读次数
全文


摘要